
www.manaraa.com

THE EDUCATIONAL EXPERIENCES OF SOFTWARE DESIGNERS WORKING IN

EDUCATION/INSTRUCTIONAL TECHNOLOGY RELATED FIELDS

Marisa E. Exter

Submitted to the faculty of the University Graduate School

in partial fulfillment of the requirements
for the degree

Doctor of Philosophy
in the Department of Instructional Systems Technology,

Indiana University
December 2011

www.manaraa.com

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 3491471

Copyright 2012 by ProQuest LLC.

UMI Number: 3491471

www.manaraa.com

ii

Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the requirements

for the degree of Doctor of Philosophy.

Doctoral Committee

Elizabeth Boling

Barbara Bichelmeyer

Kay Connelly

Martin Siegel

July 20, 2011

www.manaraa.com

iii

Copyright @ 2011

Marisa Exter

www.manaraa.com

iv

Acknowledgements

I would like to acknowledge the following individuals for all of their assistance and

understanding along the way. I would like to thank Elizabeth Boling for her availability, advice,

and understanding at every step, and the rest of my dissertation committee, for their feedback on

my proposal and at other times throughout the process. I would also like to thank Elizabeth

Boling, Barbara Bichelmeyer, Nilufer Korkmaz, Nichole Turnage, and Dr. Andrew Gibbons for

reviewing my instruments, and Miguel Lara, Rod Meyers, Micah Model, and Prashant Sabhnani,

for assistance in testing the survey instrument. Thanks to Elizabeth Boling, Nilufer Korkmaz,

and Nichole Turnage for reviewing my coding structure. Thanks to Ali Korkmaz and Simina

Boca, for discussion and advice regarding the statistical procedures used. I would also like to

thank my participants, especially the interviewees, who spent a considerable amount of time to

give thoughtful responses and who were very encouraging about the study. A special thanks to

those who participated in member checking.

 Finally, I would like to thank my family for all of their support over the past years and for

supporting me throughout my education. Thanks to my parents, Ben and Arlene Widrevitz, and

my brother Dan Widrevitz and his wife Simina Boca for ongoing encouragement and reminders

that I need to finish already. Thanks also to my mother-in-law Maureen Exter for proofreading

nearly the entire manuscript!

Last but not least, much thanks to my husband Max Exter, for helping to revise and test

instruments, proofreading, ongoing technical support to keep this laptop going until I finished,

influx of baked goods when necessary, and for his general support throughout the process. Oh

yes, and thanks to my son Ephrem Exter, without whom I would not be finishing my dissertation

this particular year. Thanks for all the fun and funny times.

www.manaraa.com

v

Marisa E. Exter

THE EDUCATIONAL EXPERIENCES OF SOFTWARE DESIGNERS WORKING

IN EDUCATION/INSTRUCTIONAL TECHNOLOGY RELATED FIELDS

As custom-built educational software becomes ever more complex, there is an increasing

need for software design skills (including software architecture, business and technical

requirements gathering, high- and low-level design, and programming) to produce high-quality

software. However, it is unclear whether there is a typical educational path for computing

professionals working on this area, or to what degree these software designers feel that domain-

specific knowledge is required in order to succeed in this area. This three-phase mixed-methods

study explores the formal (university) and non-formal (including work-sponsored, self-taught,

and informal) educational experiences of software designers currently working in this field.

Gaps between what is needed on the job and what is taught in school are highlighted, and

participants’ recommendations for improving educational programs to prepare students for

entering this field are summarized. Implications for researchers, educators, and hiring managers

are discussed.

 Findings indicate that software design professionals come from variety of backgrounds,

which include multiple formal educational paths and a wide variety of life experiences.

Computing fields (such as Computer Science) and Instructional Design are two common starting

points for professionals in this field. Regardless of formal educational background software

designers typically play a number of roles over time, both within and outside of educational

software development. Participants indicate that critical thinking, communication skills, and the

ability to learn on one’s own are among the most important competencies needed on the job, and

www.manaraa.com

vi

that these should be taught alongside Computing and/or Instructional Design foundations.

Recommendations for educational programs focus on developing those skills through real-world

experiences such as team projects.

www.manaraa.com

vii

Table of Contents
1 Chapter 1: Statement of the Problem .. 1

1.1 Research Questions ... 7

1.2 Study Design ... 7

1.3 Significance for Researchers ... 9

1.4 Significance for Practitioners, Educators and Program Administrators 10

2 Chapter 2: Review of the Literature ... 12

2.1 Design Fields ... 12

2.1.1 Education for Design Professionals .. 13

2.1.2 Expertise in Design Fields... 15

2.2 Continued Learning ... 18

2.2.1 Lifelong Learning .. 18

2.2.2 Self-directed Learning ... 20

2.2.3 Continuing Professional Education ... 21

2.2.4 “Growing” Designers .. 22

2.3 Software Design .. 23

2.3.1 Software Design Education ... 26

2.3.2 Continuing Education of Software Designers ... 44

2.4 Instructional Design .. 46

2.4.1 Roles played by Instructional Designers ... 46

www.manaraa.com

viii

2.4.2 Open topics in Instructional Design Education ... 48

2.4.3 Software Design Roles for Instructional Designers 51

2.5 Professional Interest in Educational Software .. 55

2.6 Conclusion ... 56

3 Chapter 3: Methods .. 58

3.1 Terminology Used: .. 64

3.1.1 Software Designer ... 64

3.1.2 Computing Education .. 64

3.1.3 Educational Software .. 65

3.1.4 Competencies: Skills, Knowledge, and Attitudes ... 65

3.1.5 Formal and Non-formal Education ... 65

3.2 Participants .. 66

3.3 Participants .. 67

3.3.1 Phase 1: Interviews.. 67

3.3.2 Phase 2: Survey. .. 68

3.3.3 Phase 3: Follow-up Interviews .. 68

3.4 Procedures ... 69

3.4.1 Phase 1: Interview Procedures .. 69

3.4.2 Phase 2: Survey Administration .. 71

3.4.3 Phase 3: Interview Procedures .. 74

www.manaraa.com

ix

3.5 Data Analysis .. 80

3.5.1 Qualitative Data Analysis.. 80

3.5.2 Quantitative Data Analysis.. 89

3.6 Member Checking ... 90

4 Findings .. 92

4.1 Working in “Educational Software Design” ... 93

4.1.1 Reasons for choosing to work in “Educational Software Design”................ 93

4.1.2 Organizations worked in. .. 95

4.1.3 Current Employment: Formal title .. 97

4.1.4 Roles played. ... 98

4.2 Formal Educational Paths.. 100

4.2.1 Four Types of Backgrounds .. 101

4.2.2 Experience in Software Design and Instructional Design 103

4.3 Skills and Knowledge needed on the Job .. 108

4.3.1 Playing different roles ... 108

4.3.2 Technical Skills and Knowledge ... 109

4.3.3 User experience design, visual design and usability related Skills and

knowledge 110

4.3.4 Management and Project Management related skills 111

4.3.5 Communication and Team Skills .. 113

www.manaraa.com

x

4.3.6 Design Judgment ... 114

4.3.7 Understand contexts and users .. 116

4.3.8 Need for Self-learning ... 118

4.3.9 Other things to be prepared for ... 119

4.3.10 Skills and Knowledge Especially Important for working on Educational

Software Design .. 120

4.4 Formal Educational Preparation for the Job .. 125

4.4.1 Computing Related Courses. ... 125

4.4.2 Instructional Design and Education Related Courses. 127

4.4.3 Preparation for the Job: “Unrelated” Courses and Experiences 131

4.4.4 Gaps between Formal Education and Needs on the Job 134

4.5 Types of Non-formal Educational Experiences .. 142

4.5.1 Sources and Materials Used .. 142

4.5.2 Self-learning strategies .. 151

4.6 Recommendations for an Ideal Undergraduate Program 153

4.6.1 Degree Type .. 153

4.6.2 Traits to foster in graduates ... 159

4.6.3 Passion for this work ... 167

4.6.4 Program Curriculum .. 168

4.6.5 Program traits .. 177

www.manaraa.com

xi

4.6.6 Issues with question .. 178

5 Discussion ... 181

5.1 Backgrounds: Multiple paths .. 181

It is possible that those with a background in instructional design understood this item

differently than I had intended. ... 182

5.2 Instructional Design Education and Preparation for Management 184

5.3 Interpreting the Gaps and implications for degree programs 188

5.3.1 Implications for existing degree programs .. 189

5.3.2 Ideal program for educational software designers 198

5.4 Role of experience and self-learning and implications for degree programs 200

5.4.1 Possible implications for degree programs ... 201

5.5 The Role of Hiring Managers.. 210

5.6 Limitations .. 214

5.7 Areas for Future Research ... 216

6 Works Cited .. 216

7 Appendix A: Phase 1 Semi-structured interview protocol 221

8 Appendix B: Phase 2 Survey instrument .. 223

9 Appendix C: Phase 3 interview protocol: Sample of a personalized email 256

10 Appendix D: Notes from external review of coding by experience colleague 259

11 Appendix E: Member checking .. 263

www.manaraa.com

xii

11.1 Response #1 (Phase 1 participant I1) .. 263

11.2 Response #2 (Phase 3 participant S56) .. 263

12 Appendix F: List of Participants Quoted in the Text .. 265

13 Curriculum Vitae .. 268

www.manaraa.com

xiii

The Educational Experiences of Software Designers working in

Educational/Instructional Technology Related Fields

Marisa Exter

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 1

1 Chapter 1: Statement of the Problem

The purpose of this study is to explore the types of formal (university) and non-formal

(including work-sponsored, self-taught, and informal) educational experiences software

designers currently working in educational technology related fields have experienced, and the

ways in which these software designers report these experiences have (or have not) prepared

them for their current roles.

This study is part of a larger research agenda related to software design practitioners’

reflections on their own formal and non-formal educational experiences, the ways in which these

educational experiences prepare them for their professional roles, and the implications these

professionals’ recommendations for formal educational program improvement may have for

design education in general and software design education in particular. A related exploratory

study examined the formal and non-formal educational experiences of software designers

working across many different fields (Exter & Turnage, 2011). The participants, especially the

most experienced participants, described a number of attitudes which appear to guide their

design processes as well as the approach they take towards learning what they need for each new

project. These attitudes include a strong emphasis on self-learning, and a willingness to

experiment with samples provided by others or their own earlier work. They also described

strategies which help them as they move from project to project and from technology to

technology or programming language to programming language. These include looking for

commonalities with technologies, programming languages, or systems they already are familiar

with, breaking projects into smaller pieces and testing each piece before going on to the next,

creating small prototype systems or pieces of code to learn how a new technique works before

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 2

incorporating it into a larger design, learning better design practices by looking at others’ code

and design documents, and constantly watching websites, blogs, and journals for new ideas

which may be incorporated into their own future designs.

Participants indicated disappointment that these types of attitudes and strategies were not

central to their own formal educational experiences, which for the most part focused on math,

science, and specific programming languages. The majority of participants, especially those with

the most experience (who have been out of school the longest) no longer use many of the

specific technologies or programming languages they learned during their university

experiences, but they continue to value the underlying concepts and skills addressed in university

courses. Participants indicate that courses outside of their major were of special value in helping

them develop social, critical thinking, and writing skills.

When asked how the undergraduate university experience could be improved, the

majority of the interviewees stressed the importance of real-world projects which are large and

complex, and necessitate realistic aspects such as working in teams, working with materials

created by others, and working with “fuzzy” problems. They believe that students need to learn

theory, basic concepts, and one or more programming languages prior to embarking on a realistic

project. Although future jobs may not require the use of these specific technologies and

programming languages, they are necessary foundations for tackling real problems.

Although many of the examples given by participants were industry-specific and focused

on technologies and techniques which were particular to the domain for which they were

producing software (e.g. telecom, retail, financial, web design, etc.), the attitudes, strategies, and

suggestions for improvement for educational systems were remarkably generic and appropriate

for almost any type of software design. However, there were differences in participant attitudes.

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 3

At this point it is unclear if the differences are a result of the industry in which they were

working, or differences in personality or educational background. Taking a detailed look at one

or more specific domains will allow me to learn more about the degree to which domain-specific

knowledge and skills are important on the job, as well as allowing me to ask whether domain-

specific formal education appears to be useful. The current study will explore the experiences of

one such group: software designers focused on the creation of educational software.

Both the instructional design and software design fields have relatively well-developed

cultures which value both formal educational programs and opportunities for ongoing training

and self-improvement in the field. As instructional design projects increasingly make use of

technology, often including custom-built software, the need for software design (including

software architecture, business and technical requirements gathering, high- and low-level design,

and programming) within companies or educational institutions which produce this software is

clear. However, little literature has been found that discusses how people are prepared for these

roles within the domain of instruction and education. This study will examine the roles software

designers play within educational software projects, and the formal and non-formal education

they have received. Gaps or areas for improvement in educational preparation and continuing

education as identified by software design professionals working in the field will be highlighted.

Possibilities for improving educational support for software designers in this field will be

discussed.

I have personally worked in multiple software-design environments. For seven years I

worked as a software developer in the telecommunications industry, and have spent the last six

years designing, developing, and most recently serving as project manager for a project

involving a web-based software tool used by students across a range of ages and contexts. I have

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 4

observed and trained others in each of these environments. These personal experiences are not

directly comparable. In my professional position at Lucent Technologies, I was a member of a

team of several dozen members, which worked with numerous other teams of software

developers, systems engineers, systems architects, quality assurance testers, technical

documentation writers, and others. Although I experienced the full life-cycle of several projects

and gave input at each stage in the process, my primary task was the design and development of

software systems. For the first four years on the Critical Web Reader project here at Indiana

University, I was the main designer and developer, with occasional support from hourly

employees with whom I work closely to manage the design process. I was responsible for the

entire technical design, development, implementation, and testing of the project from end to end.

I had and continue to have an influence on curricular design decisions relating to the software

tool as well. Since the project has grown, I have continued to be a key player in design

discussions and decision-making, although my development responsibilities have lowered as my

management responsibilities have grown.

Clearly, my experiences do not represent those of all software designers in either

industry. However, discussions with others and initial findings of earlier studies on software

designers across a range of industries indicate there are a few areas in which many educational

software initiatives differ from organizations which create software within the

telecommunications and similar industries. For example, in the telecommunications industry

members of lower and middle management (those who actually interact with software designers)

typically have experience as software designers or engineers themselves. In contrast, many

educational software initiatives may be led by one or more instructional designers, or other types

of specialists who do not have a formal background in software design (such as a degree in

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 5

Computer Science or Software Engineering or a related field). This may be particularly true in

small educational technology firms and projects directed by university faculty in schools of

education or other non-software-design related colleges. This distinction is likely to have an

impact on the relationship between management and software designers. Without management

who understand the software design process, one or more individual software designers may be

required to contribute the expertise necessary to assess whether a desired solution is possible,

choose the appropriate technologies, and fulfill the varied software design and development

roles, each of which require education and years of practice to master. Managers without a

formal software design background may not know the educational or work background necessary

in an employee required to fulfill all of these roles. Therefore, they may also not know how to

identify and attract personnel with the desired level of experience and assess the fit between an

interviewee and the intended project.

These conjectures have led me to wonder whether there is a typical educational path for

software designers working on educational software. Based on personal experience, I would

suspect that Computer Science or Software Engineering programs would be more appropriate to

prepare professionals for roles which involve a high level of complex software design than

Instructional Technology related programs, although it is likely that self-taught individuals from

a variety of backgrounds may play a role in software design, particularly in small companies and

research-related projects conducted by small groups based in a university setting. Standards

created by the professional organizations such as Association for Computing Machinery (ACM)

and Institute for Electrical and Electronics Engineers (IEEE) and the Liberal Arts Computer

Science Consortium tend to focus on general skills which the organizations believe all software

designers need (Atlee, LeBlanc, Lethbridge, Sobel, & Thompson, 2006; LACS, 2007).

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 6

Standards addressing Instructional Designers, such as those developed by International Board of

Standards for Training, Performance, and Instruction (IBSTPI) , address competencies relating

to Instructional Design, but only touch on certain types of technology (Richey, Fields, & Foxon,

2001). Each of these sets of standards includes at least some coverage of non-domain-specific

skills such as those relating to communication, teamwork and project management. Do these

standards and the educational programs based on them prepare students to work in a domain

such as educational technology? If not, what additional types of experience do they need?

In addition to formal (university) education, ongoing non-formal education is important

for professionals (Houle, 1980; Radcliffe & Colletta, 1989). It typically takes about 10 years for

designers to gain expertise in their area of specialization (Cross, 2004). Ongoing education is

especially important in a field such as software design in which underlying technologies, such as

hardware platforms and programming languages, are rapidly evolving. Software designers

appear to continue improving their theoretical as well as practical knowledge beyond their years

of formal education (Lethbridge, 2000).

 Self-directed learning appears to account for the majority of adult learning (Livingstone,

2001; Tough, 1989). It may be particularly important for software design professionals working

under managers who do not have a software design background themselves to be able to direct

their own learning program as well as their own learning projects. Studying those already

working in the field will be a valuable way to determine whether and in what ways this is

happening, since experts have greater understanding of their own learning process than novices

(Daley, 2000). Looking at a range of software designers from newly graduated to highly

experienced professionals will highlight the difference that non-formal education and work

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 7

experience make on their perception of their ability to perform in their role and their own

insights on their educational experiences.

1.1 Research Questions

The central research question addressed by this study is:

What formal and non-formal educational experiences do software designers

currently working on educational software report having experienced, and to what extent

do they feel these experiences have prepared them for their current roles?

In order to explore this question, several sub-questions will be addressed:

1. What are the primary role(s) played by the participants?

2. What formal education do the participants report having had? In what ways do they

perceive these experiences have prepared them for their current role(s)?

3. Where are there gaps in the competencies (e.g. skills, knowledge, and attitudes)

acquired through the formal educational experiences of these software designers?

What topics are underemphasized by formal educational experiences?

4. What types of non-formal educational opportunities have these software designers

sought or taken part in? How do these software designers seek and select these

educational opportunities after they have joined the workforce? In what ways do they

perceive these experiences have prepared them for their current role(s)?

5. What type of formal education do participants recommend for those planning to work

in this field?

1.2 Study Design

This study was conducted in three phases.

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 8

During Phase 1, interviews were conducted with software designers currently working in

organizations which produce instructional or educational software. The primary purpose was to

gain a rich understanding of the types of roles these software designers perform, the types of

formal and informal educational opportunities they have pursued, and their perceptions of gaps

in their own educational experiences. The semi-structured interview protocol was initially

developed based on themes suggested by the literature and by an earlier study relating to the

experiences of software designers working across a range of industries. As the interviews

proceeded, questions were adapted to clarify them or to examine newly emerging themes. Phase

1 data was analyzed using the constant comparative method and was used to inform the

questionnaire developed for use in Phase 2.

During Phase 2, software designers working in a variety of roles within organizations that

produce instructional or educational software were invited to participate in a web-based survey

questionnaire. The primary purpose of the data collected from this group was to determine the

levels of competence software designers feel they had upon completion of their formal

education. During the initial interview phase they were also asked to assess their current level of

competence across a range of areas found to be important to software designers. Statistical

analysis allowed me to ascertain whether or not there are gaps between what software designers

learned during their formal education and the skills, knowledge, and attitudes they believe they

need on the job. Demographic data obtained via the survey was also used to provide a picture of

the typical profiles of software designers involved in the creation of instructional or educational

software.

Phase 3 involved interviewing participants who represent profiles identified by the survey

that were not represented during the initial interview phase via email. The third phase was also

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 9

intended to allow me to explore any open issues brought to light by analyzing the survey data

and comparing Phase 1 and Phase 2 results.

A mixed-methods approach was used to analyze the data. More details are given on

specific qualitative and quantitative techniques as well as the process of integrating the findings

in Chapter 3: Methods.

1.3 Significance for Researchers

The results of this study may be of value to researchers interested in the training and

education of designers. As mentioned earlier, this study is part of a larger research agenda related

to software design practitioners’ reflections on their own formal and non-formal educational

experiences, the ways in which these educational experiences prepare them for their professional

roles, and the implications these professionals’ recommendations for formal educational program

improvement may have for design education in general and software design education in

particular. A comparison may be made to earlier studies conducted by myself and my

colleagues, and possible subsequent studies on software designers working on other industries in

order to gain an understanding as to whether software designers feel a need for more domain-

specific formal education, or whether general software design education is more useful to them

and can be supplemented as necessary by non-formal post-graduate education. These studies can

also be seen as part of an effort across the design education community to understand ways in

which various types of educational experiences prepare professionals for work in a variety of

design fields.

It would be interesting to discover whether interactions with non-formal learning

experiences (such as self-study, experimentation, and the use of various types of resources) are

similar across design fields. This may have implications for the way designers of all types are

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 10

prepared at the university level. Specifically, this research agenda may lead to suggestions on the

relative impacts of domain-specific and generalized design education at both the formal and non-

formal levels. Another interesting strand is the impact of formal educational experiences on

professionals’ ability to pursue self-learning through non-formal education post-graduation to

meet their job- and career- related needs.

1.4 Significance for Practitioners, Educators and Program Administrators

The primary groups who might be interested in the results of this study are educators and

administrators in Software Design related programs (such as Computer Science, Software

Engineering, and Human-Computer Interaction Design) and Instructional Design related

programs (such as Instructional Systems Technology or Educational Technology). This study

will in part address how university programs prepare software design professionals for their

careers in instructional/educational technology development. Based on a review of literature

(see Chapter 2), it is unclear whether there is a standard educational path for preparing students

interested in designing educational or instructional software. This study may indicate ways that

formal (university) programs and continuing education could be improved to support the

development of these professionals. As stated earlier, this study is one in a series of studies.

Looking across these studies will allow me to explore whether professionals may benefit from

more domain-specific education, more generalized software design education (which appears to

be the focus of current initiatives within the software design field), or general, cross-disciplinary

design education. Findings across related studies may inform faculty and administrators in

determining the direction of new programs, or providing focus to new programs.

Outcomes of this study may also inform instructional designers who manage, train, or

interact with software designers. Outcomes of this study may indicate the value of learning to

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 11

recognize and understand the differences between software designers who have had different

educational backgrounds and experiences. This would assist managers in identifying individuals

with relevant skills for a given project or organization. It may also point out ways to provide an

environment and resources which foster software designers’ ability to augment or update their

own skills. Understanding the background of software designers may improve communication

between instructional designers and software designers.

Finally, the findings from this study and related studies may highlight the role that on-

the-job learning plays in design fields. Administrators planning any type of design education

program (including those preparing instructional designer practitioners and software design

professionals) may be interested in exploring the implications these practices have on

preparatory programs.

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 12

2 Chapter 2: Review of the Literature

2.1 Design Fields

Nelson and Stolterman describe design as the creation of new things, and state that the

core of design activity is “to come up with an idea and to give form, structure and function to

that idea” (Nelson & Stolterman, 2002, p. 1). They include many fields in their definition of

“design”, including architecture and graphic design but also information design, social systems

design, educational systems design, and software design, and argue that a design culture which

may cut across all of these fields has its own foundations or core concepts which are as relevant

to it as “first principles” are to science (p. 3-4). Other authors coming from a range of fields

including architecture, engineering, and instructional design agree that design fields share a

common aim of creative endeavors focused on the needs of or carried out in service to a client,

and constrained by characteristics of the real world, in contrast to arts or sciences, which have

different foci and different constraints (Boling & Smith, 2007; Gibbons, 2000; Lawson, 1997;

Rowe, 1991). Design is seen as a complex endeavor, in which designers approach each new

problem as a unique case with no one optimal solution (Cross, 2001; Petroski, 1992; Rowe,

1991; Vincenti, 1990). Some skills and knowledge are seen as generic across all design practice,

while others are specific to certain fields of design, although we may not yet know where these

boundaries lie (Lawson, 1997; Rowe, 1991). Common characteristics across design fields may

include: the focus on man-made (or “artificial”) objects (Cross, 2001; Gibbons, 2000; Nelson &

Stolterman, 2002); the intuitive nature of design processes (Cross, 2004; Nelson & Stolterman,

2002); thought processes typical of all designers (Lawson, 1997, 2004; Rowe, 1991); specific

techniques used by designers (such as the use of artifacts as precedent materials and the use of

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 13

schemata and gambits to organize common patterns between ideas and solutions) (Boling &

Smith, 2007; Lawson, 2004); and common categories or types of knowledge (although the

specific knowledge may differ between design fields) (Gibbons, 2000; Vincenti, 1990).

Although the authors cited do not all agree on all of these aspects of design endeavors, there are

some common themes in thought about design - that design problems are complex; that there is

no one correct answer to design problems; and that both knowledge and creativity play a role in

design thinking. All strive to describe a “design culture” and language which allows designers to

communicate about those things which all designers have in common.

2.1.1 Education for Design Professionals

If design fields have common characteristics, it stands to reason that design educators

have something to learn from one another. The majority of the authors cited in the previous

passage explicitly or implicitly state that, because design is not the same as science or art, the

traditional methods for teaching sciences and the arts may not be ideal for teaching design.

In his 1987 presentation on “Educating the Reflective Practitioner” Schön lamented the

application of the “epistemology built into the university” which insists that theoretical

knowledge (or “school knowledge”) is the “highest” form of knowledge, and that professional

knowledge be relegated to focusing on the application of research (Schon, 1987, pp. 1-3). He

posited that this type of thinking about learning produces a regimented teaching style which

focuses first on theory, with an underlying assumption that practice is “a confounding

environment in which to experiment”, resulting in a teaching style which focuses first on basic

science, then on applied science, and only much later on “practica” which allow students to

apply what they have learned to real problems (p.7-8). He recommended instead that education

for those in the professions (including design fields) focus on “reflection-in-action” in which

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 14

students learn by doing in a “virtual world” which is a realistic but safe environment which

allows for experimentation by students and teachers (who take on the role of coach, guiding

students by observing and commenting on their “experiments” or teaching through

demonstrations). He describes situations in which this type of education is used in design fields

(such as architecture) and points out that it is often an uncomfortable technique in which students

learn through experience and “try to educate themselves before they know what it is they’re

trying to learn”, often becoming frustrated, out of control and even incompetent (p. 12), an

observation that is reflected in Shulman’s work on “Signature Pedagogies” used in educational

programs for professionals.

Shulman (2005) discusses the difference between educational cultures in different fields.

He stresses that in professions (which include design fields), education must take into account

the standards of the professions themselves as well as the standards of the “academy”. The

signature pedagogies which develop in each field define what counts as “knowledge” in that

field, how things are learned, and how knowledge is analyzed, criticized, accepted, and

discarded. They are pervasive and even routinized part of the education culture, and cut across

topics and courses, making it easier for professionals to learn highly complex subject matter

within an increasingly familiar framework throughout their period of study. Unfortunately,

Schulman explains that it is difficult to learn about the signature pedagogies used in professional

education because “once they are learned and internalized, we don’t have to think about them”

(p. 56). However, he warns that there is a danger in unwittingly perpetuating the habits of

signature pedagogies, as each will distort learning by focusing it to certain techniques or

approaches. Therefore, he suggests that members of every profession examine the signature

pedagogies used in other professions and ask themselves whether adopting some of these

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 15

approaches may improve their own teaching and learning cultures. If design fields have much in

common, Schulman’s advice seems particularly relevant in suggesting that design fields may

have much to learn from one another about teaching, and from practitioners across design fields

about the limitations of their current teaching techniques.

In his book “The Design of Design”, Brooks (2010), whose own experience is in the field

of Computer Science, laments that practices which are considered central to other types of

engineering education programs are rare in Computer Science. He considers reliance on lectures

and readings rather than critiqued practice a weakness in typical formal educational programs,

and notes that the “best modern engineering education” includes critique of student work

immediately in the Freshman year, concurrently providing science education (p. 245). He further

points out that “strong engineering curricula often include ‘co-op’ or ‘sandwich’ programs, in

which students intersperse on-the-job practice (and company training) between initial and final

academic education” (p. 245).

2.1.2 Expertise in Design Fields

Although most people have an idea what is meant by the term “expert”, creating an actual

definition for the term “expertise” is difficult to do (Kuchinke, 1997). The term “expertise” is

often described in terms of behaviors or “behavior potential” of experts. Expertise cannot be

developed solely through learning specific skills, knowledge, or heuristics. Nor can it be

assumed that experts will always perform more effectively or efficiently than novices, as factors

such as organizational restructuring can negatively impact an expert’s ability to function. An

individual with expertise “is typically seen as highly skilled and knowledgeable in some specific

area, is presumably dedicated to keeping up-to-date through practice and continued learning, and

has a high level of commitment to the area or domain of expertise” (p. 73). The degree to which

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 16

expertise is domain- and context-specific and the mechanisms through which expertise is

developed are questions of discussion among researchers in this area (Kuchinke, 1997, p. 84)

Cross (2004) reviewed studies on expertise in design fields and compared them to

literature on expertise in other areas. He found that experts in design fields differ from experts in

other fields in a number of ways. Expert designers are “ill-behaved” problem solvers, and will

tend to address even simple problems as if they were complex and do not have obvious solutions.

They are focused on solutions rather than problems. Within familiar domains, they will re-frame

problems pro-actively in ways which will help them efficiently find and structure appropriate

solutions. Because such design situations are complex as well as ill-formed, designers are often

required to make judgments based not only on the available information but also based on their

own insights and previous experiences (Korkmaz, 2011). This type of “design judgment” is

difficult to teach, but an essential part of design work.

Design experts differ from novices in additional appreciable ways (Cross, 2004). Clearly

they have been exposed to a larger number of problems and solutions they can use as examples

in their work, but their way of working with these examples also differs from the strategies used

by novices. Experts can stand back from the specifics of an example to recognize underlying

abstract principles which can be applied to future work. They are also able to access information

in larger chunks and move quickly to more “generative” reasoning. They are much more aware

than novices of the cognitive cost of strategies, and deviate accordingly from structured plans or

processes. Unlike novices, who tend to use depth-first reasoning, experts use a mixture of depth-

first and breadth-first reasoning, and switch rapidly between different aspects of a task. He also

recognizes that a small group of “outstanding experts” exceed the level attained by others. These

outstanding experts are able to work along “parallel lines of thought” to generate a range of

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 17

solutions, or focus on an appropriate narrow range of solutions. They frequently refer to “first

principles” and tend to explore problems spaces from a particular perspective which will allow

them to frame the problem appropriately to stimulate and pre-structure their design solutions.

Finally, for these experts, conflict between their own design goals and clients’ criteria inspire

especially creative solutions.

Cross recognizes that there are different degrees of expertise, and that a period of “practice

and sustained involvement” (at least 10 years involvement) and “dedicated application to a

chosen field” is necessary before one reaches the level of an accepted expert (Cross, 2004, p.

428). However, many of the studies reviewed focus on relatively inexperienced “experts” (often

comparing final year students to entry level students who are considered the “novices”) because

of the difficulty and cost involved in gaining access to highly-regarded experts working in the

field. Therefore, not as much is known about the intermediate stages of development of experts.

Lawson (2004) describes five stages which designers must pass through in order to gain

design expertise. The first stage is the acquisition of domain-specific schemata (complex sets of

ideas which form common ground within an area of practice). After this, designers begin to

develop a pool of precedent (previous design solutions which are used as points of departure in

designing aspects of a solution to a new design problem). At this point, Lawson believes that a

designer may be considered a competent professional. However, as they continue to gain

expertise, designers go through three additional stages. They identify guiding principles, which

allow them to structure and filter precedent materials and experiences. Those who become

known for being able to use these guiding principles to exceed within a specific domain may be

considered “experts”. These experts will continue to develop the ability to recognize situations

with little analysis and, finally, develop a set of design gambits or “tricks” which can be used to

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 18

solve many different problems within their domain of expertise. Lawson calls experts who have

reached this level “masters”.

Clearly, a significant amount of time is required to become what Cross and Lawson consider

“experts”. These experts can continue to develop and potential become what Cross calls

“outstanding experts” and Lawson calls “masters”. This would seem to indicate that those

individuals who become experts and continue to develop beyond the minimum requirements for

domain-specific expertise continue to learn throughout their careers and would seem to be an

important trait in successful designers. The following sections discuss the nature and impact of

lifelong learning and self-learning techniques which are so important in the continued

development of professionals of all types, and designers in particular.

2.2 Continued Learning

As was discussed in the section on expertise, designers continue to learn beyond their

initial university experiences. There are a number of models that are used to look at this type of

learning.

2.2.1 Lifelong Learning

Traditionally, education has been viewed as a “period of preparation and training” which

takes place within primary, secondary, and university settings, and is “followed by a period of

action”(Lengrand, 1989, p. 6). Within this view, the aim of education is to provide students with

all attributes they will need to fill their future life roles. Schooling is therefore aimed at

“cram[ming] the pupils’ heads with all kinds of facts” which will allow them to build a

satisfactory amount of “accumulated capital”(Lengrand, 1989, p. 6). However, if lifelong

learning is recognized as a normal part of human development, our view of education may be

seen as an important component of each phase in a person’s life. Early education can focus on

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 19

the skills necessary to acquire knowledge and communicate with others, rather than the

acquisition of large numbers of specific facts, while universal education of adults can be seen as

a normal process which is just as important as the education of children (Cropley, 1989;

Lengrand, 1989).

Based on this view, ongoing adult education can and should take multiple forms,

depending on the topic and need. Different terms have been used over time, but the types of

adult education generally fall into three categories, as described by Radcliffe and Colletta(1989).

Formal Education is used to describe hierarchically structured, graded education systems and

includes primary and secondary school, universities, and technical and professional training

programs. Informal Education includes the daily experiences with family and the community

that help individuals acquire attitudes, values, skills, and knowledge. Non-formal Education

describes any organized education which takes place outside of the established system of formal

education. Non-formal education typically focuses on specific skills, directed at a particular

clientele and set of learning objectives. This paper will focus primarily on the formal and non-

formal educational experiences of software designers, and ways that formal education did or did

not support them in their role as lifelong participants in non-formal education as well as their role

as software designers. Although Radcliffe and Collette distinguish between informal and non-

formal education, for the purposes of this report I will refer to any educational opportunity and

the use of any instructional or educational materials, including other human beings and

references to one’s own prior knowledge, as “non-formal education”.

There is no single model for instruction within non-formal education. Instruction may be

content centered (specific to a body of knowledge identified by specialists), problem-focused

(helping students to learn general problem solving skills as well as generating information useful

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 20

in solving every-day problems), focused on conscientization (a process by which the

disadvantaged can become aware of their own innate power to change society), or focused on

developing learners’ creative and planning capabilities (helping them to become more effective

decision makers and change agents) (Srinivasan, 1989). Although educational opportunities

include face to face or other types of prepared instruction, “experiential learning”, in which

adults learn by doing, is common. Experiential learning may be offered institutionally, within

experience-based training, guided or cooperative educational opportunities in which a faculty

member or field supervisor designs and measures learning goals, or by offering credit for life

experiences. However, experiential learning may be entirely self-directed. This type of learning

is discussed in the next section.

2.2.2 Self-directed Learning

Tough (1989) describes adult learning as an iceberg, with self-instruction as the unseen

base and more formal, instructor-led instruction as the visible top. Self-directed learning projects

are typically aimed at acquiring skills and knowledge directly applicable to an anticipated task.

According to a number of studies across multiple countries in the 1970s and 1980s,

approximately 80% of the adult population were “continuously engaged in a series of learning

projects, of which only 20% are occurring in formal classes” and a typical adult pursued

approximately 5 distinct learning projects per year (Tough, 1989). More up to date statistics are

hard to find; Livingstone (2001) indicates that most North Americans spend on average 10 hours

or more on “informal” learning per week but that most studies do not distinguish between

instruction and self-teaching. A 2004-2005 survey of adults in the United States found that 83%

of adults in professional/managerial professions pursued some form of ‘informal’ instruction,

while 93% were enrolled in employer-supported, work-related courses or training. Work-related

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 21

self-directed learning was not addressed(O'Donnell, 2006). Although self-instruction by

definition does not involve pre-planned or instructor-led educational experiences, it clearly forms

a crucial component of lifelong education.

These projects are most commonly motivated by an anticipated application of the

knowledge or skill being explored. Self-directed learning may be chosen for a number of

reasons, including desire to learn at one’s own pace, desire to use a flexible learning style that

matches one’s own preferences and to structure one’s own project, and the absence of

restrictions such as the time and location a course is offered and transportation issues. Although

self-instruction by definition does not involve pre-planned or instructor-led educational

experiences, it clearly forms a crucial component of lifelong education, and should be considered

in the development of formal education. Students must acquire metacognative skills in order to

monitor their own progress and sustain motivation while learning. Furthermore, learners’

expectations about their own learning and the attributions they make about their own failures and

successes and the degree of control learners have over their own learning environment will

impact future motivation for self-directed learning (Driscoll, 2000)

2.2.3 Continuing Professional Education

Continuing Professional Education (CPE) allows professionals to “advance from a

previously established level of accomplishment to extend and amplify knowledge, sensitiveness,

or skill”, and can take many different forms (Houle, 1980, p. 77). Taking lifelong learning into

account can result in stronger and more useful preparation for professionals, and eliminate the

need to “cover [all] the ground” in formal educational programs (Houle, 1980, p. 85). For pre-

professional education, this may be achieved through internships and projects during which CPE

is a resource. For professionals already immersed in a real-world setting, the need for education

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 22

typically arises from work tasks, and CPE is most valuable when it is seen as having a reciprocal

relationship with work (Knox, 2006; Mott, 2000). Cervero (2001) notes that most practitioners

understand that “the problems they face are… ‘not in the book’” or in the type of research-based

lectures typically offered by trainers (p. 25). Practitioners frequently use information acquired

through CPE in different ways than the program designers intended, but this is not necessarily

detrimental. Experts have a greater understanding of their own learning process than do novices

(Daley, 2000). Cervero (2001) recommends that this advantage be used to fuel a change in both

the content and educational design of continuing educational opportunities by integrating

continuing education more fully into individual and collective professional practice. Knox (2000)

similarly stresses the advantage of professionals’ ability to choose appropriate educational

opportunities which are relevant to tasks they are already immersed in. He recommends that pre-

professional educational institutions take this into account by encouraging learners to become

more self-directed and by responding to the needs being expressed by currently practicing

professionals.

2.2.4 “Growing” Designers

Brooks (Brooks, 2010) discusses the need to deliberately “grow” designers on the job.

Designers “need a combination of continuing formal education1 interspersed with actual hands-

on practice that is guided and critiqued by a master designer” (p. 247). Training courses led by a

good teacher can provide a balanced overview of a subject, which can help a designer quickly

“retool”. He suggests that employers can also assist in employees’ development by protecting

designers’ time by minimizing administrative and other bureaucratic distractions, and by

1 When Brooks uses the term “continuing formal education”, he is referring to intensive short courses, not

university degree programs or courses. What Brooks refers to as formal education is referred to elsewhere in this
paper as training courses, which fall into the category of “nonformal education” from a lifelong-learning
perspective.

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 23

providing varied work experiences (potentially including working “sabbaticals” from the

organization, for example to learn how users actually interact with the software by working in

the role of a user for a short period of time). Professionals can “grow” themselves as a designer

by constantly sketching designs, seeking knowledgeable criticism from colleagues, and by

studying exemplars and precedents.

“Great designers, even the most iconoclastic, rarely start from scratch – they build on the

rich inheritance of their predecessors” (Brooks, 2010, p. 205). Exemplars – examples of other’s

work, including both successes and failures – are “safe” models for designers to draw from in

their own work. Knowing exemplars of the craft (including weaknesses as well as strengths) is

very important for two reasons: to avoid risk by reusing valuable components of designs, and by

providing examples of good style which a designer can draw on in creating original designs.

Studying others’ designs can also force attention to detail, and help makes one’s own thinking

more explicit.

2.3 Software Design

A review of the literature did not reveal a common title for what we will be terming

“Software Designers”. The Association for Computing Machinery (ACM) provides separate

curriculum guidelines for each of the following: Computer Science, Computer Engineering,

Information Systems, Information Technology, and Software Engineering

(http://www.acm.org/education/curricula-recommendations). Denning (2001) listed 15 different

“IT Specialties”, including Computer Science, Computer Engineering, Database Engineering,

Human Computer Interaction, and Software Engineering. He also provides a list of 15 “IT-

Intensive Disciplines” including E-commerce, Information Science and Multimedia Design, as

http://www.acm.org/education/curricula-recommendations

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 24

well as Instructional Design, although ACM defines “IT” as a distinct field, not an umbrella

term.

A history of the field explains to some extent the variety as well as the confusion in

terminology. From the 1960s to the 1990s, Computer Science (CS) departments emerged and

began differentiating themselves from departments which had originally been involved in the

development of computing hardware (scientists, engineers, and mathematician) (Denning, 2001).

A current definition of Computer Science is offered by the Liberal Arts Computer Science

Consortium, which states that “computer science is the study of algorithms and data structures

with respect to their (1) formal properties; (2) linguistic realizations; (3) hardware realizations;

and (4) applications” (LACS, 2007, p. 2), with a particular emphasis on the formal properties of

data structures and algorithms. They go on to recommend that there may be value in adding

“consideration of social and ethical implications” and “the study of what is and what is not

possible in the context of algorithmic problem solving”.

In the 1990s, courses and then entire programs developed under the name “Software

Engineering” (SE). According to the Software Engineering Body of Knowledge (SWEBOK)

standards, SE is defined as “The application of a systematic, disciplined, quantifiable approach to

the development, operation, and maintenance of software; that is, the application of engineering

of software;” as well as the study of those approaches (Abran, Bourque, Dupuis, & Moore, 2001,

pp. 1-1). SE was originally intended to focus on the use of rigorous techniques to develop

reliable, dependable software which could accommodate the need to create larger and more

complex software systems (Denning, 2001). Software Engineers suggested that SE programs be

split from the traditional CS departments, they believed focused on “programming as

mathematical activity”, with the thought that Software engineering is as different from computer

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 25

science as chemical engineering is from chemistry (Denning, 2001, p. 10). However, in practice

software engineering is often taught in computer science departments, and both areas may be

moving closer to one another.

In 2008, the debate over what the field should be called and the unintended consequences

of choosing a name continued to frustrate computing professionals. Attempts at avoiding the use

of the term “Computer Science” have not been successful in communicating the full breadth of

the field as it is understood by practitioners. The term “programmer” is interpreted by many as

being very narrow, and focused on coding, although “insiders” consider it a broad term including

the “design, development, testing, debugging, documentation, maintenance of software, analysis,

and complexity of algorithms” (Denning, 2008, p. 19). An attempt to broaden the field by

including Information Technology (IT) under the umbrella of Computer Science was

disappointing, as it increased enrollments in IT programs but not in core computer science

programs. Denning stresses that a member of the field of Computer Science has much broader

responsibilities and interests than are understood by the general public – or perspective students.

He illustrates this by pointing out that the typical computer scientist has many different voices,

including: programmer, user, computational thinker, engineer, and scientist. Unfortunately, this

realization does not assist in the attempt to find a common name for those who work in this

general field.

An analysis of job advertisements for positions in the U.S.A. on Dice.com and

ComputerWorld magazine conducted in 2004 revealed that the terms “Programmer”, “Software

Developer”, and “Software Engineer” were used to describe very similar job descriptions, all

relating to the role the author referred to as “software development” (Surakka, 2004). The author

began with an assumption that these three terms would frequently be used synonymously, but

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 26

found, as he expected, that “low level programming skills” (which the author evaluated by

counting the percentage of advertisements including the terms “Assembler”, “C”, “C++”, and

“embedded”) were statistically significantly more prevalent in job advertisements for “Software

Engineers”, although certainly not exclusive to this job title. A quick and informal glance at

Dice.com on June 1, 2011, shows a similar pattern; the first 5 results in a search for the term

“software developer” include the job titles “Software Engineer IV (Web App Developer)”,

“Software Developer (Mid-Level)”, “Software Developer III”, and “Software Developer”.

Searching on the names of specific technologies (such as “Java” or “.NET”) leads to similar

results. The term “programmer” may be out of vogue in a Job Title – a search for “programmer”

tends to bring up titles relating to “program management”, although the seventh result in a search

for “Java” brought up the Job Title “Java Developer/Java Programmer”. It is noteworthy that

despite the conclusion of both experts and practitioners that knowledge of a specific language is

not as important as more general software design and development skills, employers tend to list

specific programming languages not only in job descriptions, but also in job titles.

2.3.1 Software Design Education

A number of professional organizations have created standards aimed at providing

guidance for the development of Computer Science and Software Engineering programs.

Although schools are not required to follow any of these standards, these professional

organizations are quite influential in Software Design related fields. The following section

discusses some of these standards, and then gives a quick overview of the types of discussions

Software Design educators are having on the topic of Software Design education, as evidenced

by conference presentations and published papers.

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 27

2.3.1.1 IEEE and ACM: Software Engineering Body of Knowledge and Curricular

Guidelines

In 1998, the CS division of IEEE (Institute of Electrical and Electronics Engineers) and

the ACM (Association for Computing Machinery), the two major professional organizations in

the computing field, established a joint task force to produce a set of curricular guidelines for

undergraduate programs (Atlee, et al., 2006). Software Engineering standards were based on the

Software Engineering Body of Knowledge (SWEBOK) compiled by the same coalition.

Although this coalition later split (IEEE wanted to pursue professional certification of software

engineers based on the SWEBOK standards, while ACM felt that the field was not yet mature

enough for this step), the ACM went on to create a flexible set of curricular requirements which

universities could use to develop their own SE program or enhance CS or related programs with

SE concentrations (Atlee, et al., 2006).

The SWEBOK standards list the following primary knowledge areas within software

engineering: software requirements; software design; software construction; software testing;

software maintenance; software configuration management; software engineering management;

software engineering process; software engineering tools and methods; and software quality. The

Software Engineering Education Knowledge (SEEK) based on SWEBOK was intended to

provide “the essential and desirable knowledge and skills that any software engineering program

should try to include in its curriculum” (Atlee, et al., 2006, p. 13). These areas were designed by

a committee and are, where possible, based on educational research (Atlee, et al., 2006).

SEEK recommends 10 knowledge areas from software engineering as well as the related

disciplines of mathematics, computer science, engineering, and economics. Each of the ten areas

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 28

consists of a number of knowledge areas, and the guidelines recommend a minimum number of

lecture hours to devote to each area. The ten areas include:

• Computer Essentials, which includes computer science foundations and more advanced

techniques (this covers a very wide range of computer science-related concepts and

skills), as well as “construction tools” such as development environments, graphical user

interface builders, and unit testing tools

• Mathematical and Engineering Fundamentals, which includes mathematical topics which

form a foundation for computer science; engineering foundations for software (including

methods and techniques related to analyzing and developing hardware, and systems

development and engineering design practices, and measurements and metrics); and

“engineering economics for software” (including software lifecycle considerations,

various mechanisms for generating system objectives such as participatory design and

prototyping, and methods for evaluating and ensuring cost-effective solutions)

• Professional practice, which includes concepts relating to group dynamics, psychology,

communication skills related to reading and writing of code and technical documentation,

team and group communication and presentation skills, and topics such as accreditation,

codes of ethics, the nature and role of professional societies and software engineering

standards, and employment contracts

• Software modeling and analysis, which includes principles and techniques for creating

and analyzing various types of software models, and generating documentation for every

level of software design and with various documentation techniques and specification

languages

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 29

• Software design, which includes design issues relating specifically to the software

development lifecycle, function- and object-oriented design strategies, architectural

design, and human computer interface design, as well as design patterns and other

techniques for lower-level design, and gaining familiarity with various types of design

tools and design evaluation techniques

• Software verification and validation, including a variety of formal techniques for

performing system checks and ensuring that a program meets the expectations of

stakeholders

• Software Evolution, including the process and other activities involved in software

evolution

• Software process concepts, and the implementation of the software development process

• Software quality, including basic concepts and the culture of ‘software quality’, and

related standards and processes

• Software management at various levels, including project planning, personnel and

organization planning, project management, and software configuration management

(The Joint Task Force on Computing Curricula, 2004)

The full list of knowledge areas is very extensive. However, the steering committee

intended that the topics be focused on practical knowledge, and indicated that students need

sufficient exposure to all of these topics to become aware of available resources and their

responsibilities as professionals. Although hands-on exercises are stressed, the committee’s

guiding principles state that it is not necessary to have hands-on exercises with all design

patterns, standards, and industrially relevant area covered in the sub-areas. They intend the

curriculum to be flexible enough to allow schools to adapt it to their university’s additional

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 30

requirements, and to create more specialized programs. To aid in this goal, the SEEK provides a

number of sample four year curricula which allow for various foci, and a number of curricular

guidelines to help universities developing their own curricula based on the standards. Some

central guidelines include:

• Curricula should stress that SE is both a computing discipline and an engineering

discipline

• Concepts, principles, and issues should be taught as recurring themes throughout the

curriculum

• Concepts which require academic maturity should be taught later in the curriculum

• Students should learn some application domains

• The curriculum should include significant real-world experiences, including case studies,

practical assignments, course projects, and experience in an actual work setting

• Curriculum designers combine the knowledge areas in order to provide an efficient and

synergistic curriculum

(Atlee, et al., 2006)

2.3.1.2 IEEE and ACM: Computer Science Curriculum 2008

A similar body of knowledge was created to guide the development of Computer

Science curricula in 2001. In 2008, this set of guidelines was updated in order to keep

standards current, but also to address concerns that the needs of industry and other interested

parties had not been adequately met in the 2001 standards (ACM and IEEE Computer

Society, 2008). The standards are intended to help produce learning objectives which will

help produce graduates with the following characteristics, capabilities, and skills listed in

Table 1.

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 31

Table 1: Computer Science Curriculum Standards

Graduate Characteristics

• System-level perspective
• Appreciation of the interplay between theory and practice
• Familiarity with common themes and principles
• Significant project experience
• Attention to rigorous thinking
• Adaptability

Capabilities and skills (paraphrased for brevity):

• Cognitive capabilities and skills relating to Computer Science
o Knowledge and understanding of essential facts, concepts, principles, and

theories
o Modeling and design of computer-based systems in a way that

demonstrates comprehension of tradeoffs involved in design choices
o Identification of requirements for a problem and plan an appropriate

solution.
o Understanding the elements of computational thinking, as applied broadly

to everyday life.
o Critical evaluation and testing.
o Appropriate use of methods and tools.
o Recognize and be guided by social, professional, legal, and ethical

concerns regarding professional responsibility
• Practical capabilities and skills relating to computer science

o Design and implementation.
o Evaluation
o Information management
o Human-computer interaction
o Risk assessment
o Effective deployment of tools for construction and documentation of

software, particularly in regard to solving practical problems
o Software reuse
o Operation of computing environment and software systems

• Transferable skills
o Communication
o Teamwork
o Numeracy
o Self-management of one’s own learning and development and time

management
o Professional development
o Software reuse and open source issues.

(ACM and IEEE Computer Society, 2008)

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 32

2.3.1.3 The International Federation for Information Processing: Standards for Professional

Practice

In 1998, the International Federation for Information Processing developed a set of

Standards for Professional Practice. These standards were created in order to address the needs

of information technology professionals who worked in multiple countries. The goal was to

create an overarching framework which could be adapted by organizations within each country.

These standards were later presented at a joint conference with the International Conference on

Software Engineering, during which 350 Software Engineers attended a forum regarding the

standards’ relevant to SE.

The areas addressed in these standards include ethics of professional practice; established

body of knowledge; education and training; professional experience; best practice and proven

methodologies; and maintenance of competence. Interestingly, in addition to the “education and

training” area which is intended to cover undergraduate education, these standards also address

the need for continued lifelong learning. Supervised experience following graduation and

activities practitioners undertake throughout their professional lives are stressed in the

“professional experience” and “maintenance of competence” areas. These guidelines later fed

into the IEEE-CS/ACM Computing Curricula discussed in the previous sections.

2.3.1.4 Liberal Arts Computer Science Consortium

The Liberal Arts Computer Science Consortium (LACS) developed its own standards for

Computer Science programs at liberal arts institutions. The LACS explain that traditionally

computer science programs have focused primarily on the formal properties of algorithms and

data structures, with a slightly lower emphasis on languages, machine hardware, and

applications. They note that within the liberal arts setting, considering cross-disciplinary

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 33

perspectives on problem solving, the application of theoretical results, breadth of study, and

communication skills are also stressed (LACS, 2007). The LACS guidelines suggest that

undergraduate computer science programs in liberal arts schools focus on the following goals:

• To enable understanding the capabilities, limitations, and ramifications (technical,

ethical, and social) of computing, the state of the art, and current research and

development in computer science and related areas;

• To develop an ability to understand and analyze end user needs, master the techniques of

creating and applying algorithms and data structures, and analyze their viability,

correctness, and efficiency of utilizing analytical methods and appropriate theoretical

results;

• To become effective at working individually and in teams, building on the work of

others, and to be able to communicate technical information with both experts and non-

experts;

• To prepare for adapting to changes in hardware and/or software technologies, and new

and changing application areas through a firm grasp of fundamental principles and to

develop an appreciation of the need for life-long learning;

• To appreciate both the demands and range of opportunities of the computing profession

and provide for and encourage creative contribution to the art.

(LACS, 2007, p. 3)

Students who have completed a curriculum following the LACS guidelines should be

able to:

• Understand multiple views of problem solving (e.g., 2 or 3 of imperative, object-oriented,

functional);

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 34

• Have experience applying theoretical results to solving practical problems;

• Be able to apply critical thinking and problem solving skills across disciplines;

• Have experience with at least one large, team-based project or research project;

• Understand non-scientific perspectives and have sufficient background to be able to

communicate effectively with people with those perspectives.

• Recognize the importance of social and ethical issues in computing.

(LACS, 2007, p. 4)

2.3.1.5 ABET Computing Accreditation Commission

The ABET accreditation guidelines must be followed by any program which wishes to

have ABET accreditation. The guidelines for “Computing” programs break down into several

sets, including “Computer Science and Similarly Named Computing Programs” (ABET

Computing Accreditation Commission, 2010, p. 7), “Information Systems and Similarly Named

Computing Programs” (p. 8), and “Information Technology and Similarly Named Programs” (p.

8). The guidelines for Computer Science programs appear to be the most applicable to this

study. The general guidelines listed in Table 2 must be met by all three types of program. Table 3

includes the guidelines specific to Computer Science.

Table 2: ABET Accreditation for Computing Programs: General Guidelines

General Guidelines

1. An ability to apply knowledge of computing and mathematics appropriate to the
discipline

2. An ability to analyze a problem, and identify and define the computing
requirements appropriate to its solution

3. An ability to design, implement, and evaluate a computer-based system, process,
component, or program to meet desired needs

4. An ability to function effectively on teams to accomplish a common goal
5. An understanding of professional, ethical, legal, security and social issues and

responsibilities
6. An ability to communicate effectively with a range of audiences
7. An ability to analyze the local and global impact of computing on individuals,

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 35

organizations, and society
8. Recognition of the need for and an ability to engage in continuing professional

development
9. An ability to use current techniques, skills, and tools necessary for computing

practice.
(ABET Computing Accreditation Commission, 2010, p. 3)
Table 3: ABET Accreditation for Computing Programs: Computer Science Specific Traits

Characteristics of Graduates

1. An ability to apply mathematical foundations, algorithmic principles, and
computer science theory in the modeling of design of computer-based
systems in a way that demonstrates comprehension of the tradeoffs involved
in design choices.

2. An ability to apply design and development principles in the construction of
software systems of varying complexity.

Cognitive capabilities and skills relating to computer science

3. Computer science: One and one-third years that must include:
a. Coverage of the fundamentals of algorithms, data structures, software design,

concepts of programming languages and computer organization and architecture.
b. An exposure to a variety of programming languages and systems.
c. Proficiency in at least one higher-level language.

4. One year of science and mathematics:
a. Mathematics: At least one half year that must include discrete mathematics. The

additional mathematics might consist of courses in areas such as calculus, linear
algebra, numerical methods, probability, statistics, number theory, geometry, or
symbolic logic.

b. Science: A science component that develops an understanding of the scientific
method and provides students with an opportunity to experience this mode of
inquiry in courses for science or engineering majors that provide some exposure
to laboratory work.

(ABET Computing Accreditation Commission, 2010, p. 5)

In addition, ABET accredited programs are required to monitor student performance,

publish educational objectives which are consistent with the institution’s overall mission and

ensure that student outcomes relating to these objectives are documented, continuously review

the program curricula, and hire faculty with appropriate expertise and educational backgrounds,

as well as maintaining adequate facilities and instructional support services (ABET Computing

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 36

Accreditation Commission, 2010). The Computer Science related guidelines indicate that at

least some full time faculty members must have a Ph.D. in Computer Science.

These recommendations have changed in the last few years. For example, prior to 2009,

the guidelines explicitly required differential and integral calculus, probability and statistics, and

a full year of laboratory science. As Popyack (2010) points out, this may afford accredited

programs the opportunity to, for instance, work with mathematics and science departments to

design courses specifically adapted to the needs of the Computing students. Perhaps even more

excitingly (at least from Popyack’s point of view), this also opens the doors to incorporating arts

into Computer Science programs (possibly creating a Bachelor of Arts in Computer Science), or

creating interdisciplinary degrees.

2.3.1.6 Ongoing Discussions of Software Design Educators

Education of Software Designers is an important topic to the leading professional

organizations in the field, as evidenced by the work done by the IEEE/ACM joint task force.

The IEEE has annual conferences focused on each of the following areas: “Software Education

and Training”, “Computer Science and Education”, “Information Technology Based higher

Education and Training”, “Digital Game and Intelligent Toy Enhanced Learning”, “Frontiers in

Education” and “Development and Learning”. In the last several years special symposia and

workshops on topics such as “International Workshop on Technology for Education in

Developing Countries” and “International Symposium on IT in Medicine & Education”. In

2006, the second annual conference was held on “Engineering Education, Instructional

Technology, Assessment & E-Learning” ("IEEE Conferences and Meetings," 2008). IEEE

members are also provided access to many resources for continuing education. Similarly, the

ACM has two special interest groups dedicated specifically to education of software designers:

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 37

SIG CS Education, which “provides a forum for educators to discuss the problems concerned

with the development, implementation, and/or evaluation of computing programs, curricula, and

courses, as well as syllabi, laboratories, and other elements of teaching and pedagogy”

(http://www.sigcse.org/, June 1, 2011), and SIG IT Education, which has a very similar mission

relating to the area of Information Technology, and which has created a model undergraduate

curriculum as well as helping to create accreditation guidelines for IT programs. Each of these

organizations has yearly conventions and a very active membership. Two major ACM journals

focus on Computing education: “The ACM Transactions on Computing Education” and Inroads,

a magazine “intended for professionals interested in advancing computing education in the

world”. Both ACM and IEEE also provide access to a variety of educational resources for their

members’ own continuing education.

2.3.1.7 Open topics for Software Design Educators

The debate over the most critical areas to be covered in software design-related programs

continues. As part of his critique of the current state of computing instruction, Andriole

(Andriole & Roberts, 2008) compared the results of a survey of practitioners (including upper

management as well as software developers themselves) to the ACM Task Force standards.

Although there were areas of overlap, including design, integration, information and application

architecture, optimization, and metrics, there were a number of areas that practitioners felt were

important which were not addressed by the task force standards, including knowledge and skills

related to business strategy and applications, technology infrastructure and support, and

organization and management. Andriole posits that the need for programmers is decreasing

while the need for business and “enterprise” level skills is increasing. Therefore, he recommends

that programs decrease their traditional focus on programming languages, algorithms, and

http://www.sigcse.org/

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 38

datastructures, and focus more on software engineering best practices. In his counterpoint

response, Roberts argued that traditional programming skills were still relevant and necessary,

and that the demand for these skills is indeed increasing. He warned that the United States risked

“abandoning the playing field” by failing to produce students with these necessary “traditional”

software engineering skills.

Dewar and Schonberg (2008) made a similar argument, expressing their concern about

“worrisome trends in Computer Science education”. Trends which concerned them the most

were the lowering of mathematics requirements in CS programs and replacement of

programming skills in several languages with “cookbook approaches using large libraries and

special-purpose packages”. They believe that these trends are leading to a lack of skills required

by today’s software industry, and the creation of “easily replaceable professionals.”

This article sparked an ongoing debate, in which Dewar posited that with appropriate

training in “the fundamentals”, a computer science professional should be able to create bug-free

software. These fundamentals include instruction in formal specification, requirements

engineering, systematic testing, formal proofs of correctness, structural modeling, and other

areas, and indicated that these could best be taught with more traditional programming languages

such as C++ (Dewar & Astrachan, 2009). In his “counterpoint” argument, Astrachan argued that

rather than dumbing down computer science curricula, decisions such as the use of the Java

programming language were made for good pedagogical reasons, “working to ensure that our

beginning courses were grounded in the essence of software and algorithms” (Dewar &

Astrachan, 2009, p. 45). Other educators discuss the value of spending time and energy on

projects that may help students to learn higher-order thinking skills (Hauer & Daniels, 2008) and

give students experience dealing with clients, struggling with communication and people skills,

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 39

developing timelines, learning about new programming languages or technologies on their own,

and dealing with complex and stressful problems similar to those they would encounter in the

“real world”(Ghassan Alkadi, 2010). A related discussion examines the benefits and drawbacks

of teaching within a context versus more generalizable, decontextualized instruction, and in what

situations which approach should be used (Cooper & Cunningham, 2010; Gudzia, 2010).

Some educators are also concerned about the impact of the choice of in-course activities

on student retention. Astrachan argued that programs must “encourage passion” by looking for

“problems that motivate the study of computing, problems that require computing in their

solution” in order to attract students back to the field (Dewar & Astrachan, 2009, p. 45). Kumar

(2010) similarly pointed out that certain languages and programming development environments

may be especially attractive to students in introductory courses, because they encourage

playfulness through the ability to quickly design and implement interesting and fun applications.

Although this series of arguments may seem esoteric at times, their impacts on university

programs can drastically change the focus of the education students receive, and according to the

authors, directly impact the types of jobs graduates will be prepared for. Walker (2010) warns of

the tendency of both faculty and students to recommend adding every conceivably useful skill or

topic to their computing degree program, thereby preparing students for any job they might apply

for. Yet, as he points out in his “Eight Principles of an Undergraduate Curriculum”, not every

topic can be adequately covered, much less be absorbed by students, in a 4-year curriculum

(Walker, 2010). Determining which skills should receive attention is the challenge for educators

and administrators.

Lethbridge (2000) addressed the types of knowledge most important to software

professionals through a survey instrument which asked participants to respond to each of 75

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 40

topics identified from university curricula and SWEBOK standards. Respondents were

requested to indicate for each topic how much they had learned at school, how much they

currently knew, and how useful each topic had been to them. The results of this survey allowed

the researcher to determine which topics covered extensively at the university level tended to be

forgotten by professionals as well as areas in which professionals had to augment their learning

on the job. Lethbridge provided a list of the 25 most important topics as identified by

professionals, as well as a list of the 25 least important topics. “Importance” was calculated by

combining participants’ responses on two questions which addressed the usefulness of specific

details of the material on the job (from 0=”completely useless” to 5=”essential”) and the amount

of influence the material had on their thinking (approach to problems and general intellectual

maturity, with 0=”no influence at all”, and 5=”profound influence on almost everything I do”)

(p. 45). For each of the 25 most important topics, the “amount learned in education” not

surprisingly ranked lower than “amount known now”, indicating that participants had learned

more since graduating than was acquired at school. However, there seemed to be larger

discrepancies in some areas than others. For example, among topics that ranked on average

higher than 3.0 on a 5.0 likert type scale in importance, the following items received a mean of

less than 2.0 in amount learned in education (where 1=”became vaguely familiar” and

2=”learned the basics”. In contrast, 3=”became functional (moderate working knowledge)”,

4=”learned a lot”, and 5=”learned in depth; became expert”): “software design and patterns”,

“software architecture”, “requirements gathering/analysis”, “O-O concepts”, “HCI/user

interface”, “Ethics and professionalism”, “Analytics and design methods”, Giving

presentations”, “Project management”, “Testing, verification, QA”, “Technical writing:,

“Databases”, “Leadership” and “Configuration/release management” (p. 49). The last two items

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 41

received less than a 1.0, which indicated that these topics had not even been mentioned within

the bachelor’s program, to participants’ recollection. While “leadership” may arguably be a skill

that is not immediately necessary in an entry-level position, “configuration/release management”

is likely part of a project of any significant size. Interestingly, the list of bottom 25 items

includes some that professionals likely believe were covered more than necessary in their formal

education. Not only were these items of relatively low importance, but in comparing “amount

learned in education” to “amount known now”, Lethbridge identified a number of areas where

participants apparently forgot much of what was known. These included “linear algebra and

matrices”, “Physics”, “Graph theory”, “Control theory”, “Differential/integral calculus”,

“Combinatorics”, “Laplace/Fourlier transformations”, “Chemistry:, and “Differential equations”.

You may note that these topics all relate to mathematics and physical sciences. It is possible that

although specific concepts were forgotten, they were still useful in some way. Since Lethbridge

has combined scores relating to direct importance on the job and influence on thinking in

general, it is not possible to determine whether some of these items may have had a more indirect

impact. However, except for “Linear Algebra” (which scored just barely above a 2.0), the items

mentioned all had a mean score of under 2.0, indicating very little importance overall. These

findings may indicate some areas where curricular designers could consider whether the balance

of topics in degree programs is correctly adjusted for the needs of graduates.

Of course, looking at professionals’ self-reporting of important topics is just one piece of

the puzzle that faculty and students are concerned about. As part of his analysis of job

advertisements, Surakka (2004) compared topics required in job advertisements to the degree to

which related courses are required in ABET/CAC accredited programs (based on an earlier study

by McCauley and Manaris), as well as comparing them to the importance given to each topic in

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 42

Lethbridge’s (2000) survey of computing professionals. The most commonly requested skill-set

in job advertisements, “Database Management Systems”, was required by only 31% of

accredited programs, although it also ranked among the highest on the items listed in

Lethbridge’s study (with a mean of 3.3 on a 6-point likert scale ranked 0-5, with items of greater

importance ranking higher). Courses that were nearly always included in accredited programs

were not necessarily a good match with the job advertisements, or with professionals’ appraisals

of the importance of these topics. For example, 96% of accredited programs required a course

on Operating Systems, which was only “sometimes” mentioned by job advertisements (that is,

this topic was mentioned in 2-19% of advertisements), although it also received a relatively high

score of 3.3 on the scale provided by professionals. “Programming Languages”, which was

required in 87% of programs, was “hardly ever” required by job advertisements (that is, this was

mentioned in less than 1% of advertisements). The next three topics, “Software Engineering”

(required by 76% of programs), “Architecture” (69% of programs), and “Analysis of

Algorithms” (67% of programs) were all included only “sometimes” in job advertisements. Of

the three items that received the highest ranking by professionals (3.3), only one was included

very frequently by programs (Operating Systems, included in 96% of programs). The others

were Database Management Systems, which, as mentioned earlier, was required by only 31% of

programs, and Human-computer Interaction, which was required in a mere 4% of programs. In

contrast, Surakka’s comparison of popular programming languages was a better match as the

“first programming language” taught in academic programs in the 2001-2002 school year (which

would have prepared graduates entering the workforce in 2004) was Java (in 49% of programs),

C++ (in 40% of programs), and C (in 11% of programs), which matched well with employers’

most frequently requested programing languages. The author cautions that reviewing job

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 43

advertisements cannot necessarily identify all skills which are not important on the job as some

information may be missing. However, the implication is that skills that are included in job

advertisements must be important on the job2. It is noteworthy that communication and team-

skills were missing from Surakka’s comparison table. A quick glance at Dice.com shows that

these skills are requested in current advertisements. It is not clear whether Surraka was simply

uninterested in these skills, or whether they were not commonly requested in 2004. Lethbridge

(Lethbridge, 2000) includes topics such as psychology, philosophy, ethics and professionalism

(which ranked in the top quartile in “importance”), technical writing (in the top quartile), and

“people skills” including giving presentations to an audience” (top quartile), “leadership” (top

quartile), and negotiation, indicating that these skills were valued by professionals in 2000.

When reviewing the Computer Science Curriculum Standards, the joint IEEE Computer

Society and ACM society task force found that a major concern brought up by industry leaders

was that graduates “[have] been indoctrinated in particular tools or processes that they then have

to unlearn” (ACM and IEEE Computer Society, 2008, p. 11). The industry leaders recommended

instead that graduates need to have an appreciation for why particular topics are important along

with guidelines which will “help them think about the craft of modern software development” (p.

12). As one industry representative was quoted as saying in the report, “The thing we [as

employers] can’t afford to do… is teach candidates how to think critically, be effective problem

solvers, and to have basic mastery of programming languages, data structures, algorithms,

concurrency, networking, computer architecture, and discrete math/probability/statistics.”

Among the other specific issues found especially important by industry are: security issues,

2 The specific skills as well as programing languages mentioned here reflect those that were important in

2004 and might not be directly relevant in 2011 – although other literature would suggestion that the “course topics”
listed continue to be relevant both in education and in practice, if the relative importance of specific programing
languages may have shifted.

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 44

quality issues (including testing, debugging, bug tracking, concerns about code readability and

documentation, and the importance of code reviews), Software Engineering principles and

techniques (including basic release management and source control principles and best practices

for developing software in teams), code archeology (the necessity to be prepared to delve into

large, poorly documented code bases and make sense of them), and back-of-the-envelope type

performance tuning. The committee also addressed the need to draw increased attention to

“teaching of basic programing”, and a number or specific areas were modified to focus more on

architecture and planning related concerns. The need for students to be exposed to different

programming paradigms across the course of their program was also taken into account. Finally,

the committee made changes to address the concerns of international competitiveness, legal,

social, and cultural issues related to designing software meant to be used internationally.

2.3.2 Continuing Education of Software Designers

Because technology changes so rapidly, the need for ongoing education beyond the

period of formal education was recognized since the early days of computer science. In 1978,

Fischer, Alvarez and Taylor surveyed practicing programmers to determine how they kept up to

date, and made suggestions on the implications of this study to computer science education

(Fisher, Alvarez, & Taylor, 1978). They found that the majority of programmers kept up to date

by talking with colleagues, “shop standards”, and books and manuals. They found that

programmers tended to be more up-to-date than non-programmers, and suggested that managers

ensure that they themselves were up-to-date and that they leverage programmer’s inclinations to

learn from one another by hiring new programmers with up-to-date skills, keep shop-standards

and an in-house library of published books up to date.

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 45

Lethbridge’s (2000) survey of in-practice professionals provides evidence of on-the-job

learning by comparing self-reported levels of “current knowledge” (on a scale from 0=”know

nothing” to 5=”know in depth/am expert (know almost everything)” to the amount learned in

formal education (from “learned nothing at all” to “learned in depth; became expert (learned

almost everything)”) (p. 45). Although this can be seen as a troublesome gap between on-the-job

needs and formal educational programs, it also indicates that professionals do continue their own

education once on the job – not only on specific technical skills, but also in high-level,

theoretical areas such as those mentioned earlier. The top four topics listed in “learned on the

job” (calculated as current knowledge – learned in education) are “Testing, verification, and

quality assurance”, “maintenance, reengineering, and reverse-engineering”, “project

management”, and “configuration and release management” (p. 46).

As was discussed earlier, Brooks (2010) recommends formal training, skilled mentorship,

and broad use of “exemplars” or precedent materials for the purpose of on-the-job training. Exter

and Turnage (2011) found that non-formal learning is considered a natural part of a computing

professional’s role, and that experienced professionals regularly engage in a number of activities

ranging from reading books and online resources to learning from peers and mentors and

attending structured training courses. Experimenting with and learning from samples of others’

code or designs is considered a common and useful technique to learn from as well as to progress

in the design process. In a related study, Turnage and Exter (in preparation) found that software

design professionals use their own previous experiences as well as designs of others to further

their own design thinking. This “precedent use” is similar to Brook’s discussion of the use of

“exemplars”.

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 46

University programs need to provide a foundation for students to succeed in designing

and developing increasingly complex systems, and faculty members and the field at large must

continue to pursue ways to improve educational programs to fill this need. However, as was

pointed out in Fisher et al’s 1978 study, in a field which focuses on rapidly changing

technologies, keeping up to date will always be important. Understanding how and what

software designers learn after they have left university may help instructors and designers of

university programs prepare students for the important role self-instruction will play in their

future careers. As Walker (2010) points out, because the computing field changes so rapidly, it

is not possible to anticipate future innovations and technologies that students may encounter on

the job, much less teach them the specific skills. Therefore, “[students] must be able to learn on

their own, and they should be able to place new ideas within a framework of solid principles. A

program in computing should provide this foundation” (p. 21).

2.4 Instructional Design

2.4.1 Roles played by Instructional Designers

2.4.1.1 IBSTPI Standards

In 1977, a Joint Taskforce was created by the Association for Educational

Communications and Technology (ACET) and the National Society for Performance and

Instruction (NSPI, which later became the International Society for Performance Improvement,

ISPI). This Joint Taskforce developed a list of competencies for instructional design

professionals. The Taskforce was later reorganized because of issues relating to conflicts of

interest, and is now the International Board of Standards for Training, Performance and

Instruction (IBSTPI). The 2000 version of the Instructional Design Competencies include 23

“domains” organized under four main areas; Professional Foundations, Planning and Analysis,

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 47

Design and Development, and Implementation and Management. Each domain includes a set of

skills, some of which are “essential” while others are considered “advanced” and may not be

covered in all programs. The 23 domains are listed in Table 4.

Table 4: Instructional Design Competencies: The Standards

Professional Foundations

1. Communicate effectively in visual, oral, and written form.
2. Apply current research and theory to the practice of instructional design. (NOTE: this

entire domain is considered “advanced”)
3. Update and improve one’s knowledge, skills, and attitudes pertaining to instructional

design and related fields.
4. Apply fundamental research skills to instructional design projects (NOTE: this entire

domain is considered “advanced”)
5. Identify and resolve ethical and legal implications of design in the workplace (NOTE:

this entire domain is considered “advanced”)

Planning and Analysis

6. Conduct a needs assessment.
7. Design a curriculum or program.
8. Select and use a variety of techniques for determining instructional content.
9. Identify and describe target population characteristics.
10. Analyze the characteristics of the environment.
11. Analyze the characteristics of existing and emerging technologies and their use in an

instructional environment.
12. Reflect upon the elements of a situation before finalizing design solutions and

strategies.

Design and Development

13. Select, modify, or create a design and development model appropriate for a given
project (NOTE: this entire domain is considered “advanced”)

14. Select and use a variety of techniques to define and sequence the instructional content
and strategies.

15. Select or modify existing instructional materials.
16. Develop instructional materials.
17. Design instruction that reflects an understanding of the diversity of learners and

groups of learners.
18. Evaluate and assess instruction and its impact.

Implementation and management

19. Plan and manage instructional design projects. (NOTE: this entire domain is
considered “advanced”)

20. Promote collaboration, partnerships and relationships among the participants in a
design project (NOTE: this entire domain is considered “advanced”)

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 48

21. Apply business skills to managing instructional design (NOTE: this entire domain is
considered “advanced”)

22. Design instructional management systems (NOTE: this entire domain is considered
“advanced”)

23. Provide for the effective implementation of instructional products and programs.

(Richey, et al., 2001)

2.4.1.2 ISTE and NCATE accreditation guidelines

The International Society for Technology in Education produces standards related to

secondary computer science education, technology facilitation, and technology leadership. None

of these appears to relate directly to instructional design education, and the computer science

education standards relate specifically to teaching computer science at the secondary level. The

standards appear to be aimed at teachers, technology support personnel, and administrators.

As of March, 2011, AECT notified NCATE that it would no longer be maintaining

standards for Educational Technology and Media Support Specialist-related programs. New

programs will not be accepted by NCATE beginning in Fall, 2011

(http://www.ncate.org/Standards/ProgramStandardsandReportForms/tabid/676/Default.aspx).

Although these standards will be briefly touched on in following sections because they have

influenced programs up to 2011, they will not be discussed here in detail.

2.4.2 Open topics in Instructional Design Education

Studies of how professional instructional designers spend their time indicate that they

play many roles beyond those recognized in traditional Instructional Design models. In a survey

of in-practice instructional designers, Cox and Osguthorpe (2003) found that, on average,

instructional designers spend only about 23% of their time on “original design”, with the next

22% spent on project management and administrative responsibilities, although the amount of

time spent on various activities varied quite a bit depending on the specific job title held. A

http://www.ncate.org/Standards/ProgramStandardsandReportForms/tabid/676/Default.aspx

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 49

review of literature by Kenny, Zhang, Schwier, and Campbell (2005) identified the following

additional roles: communications, editing and proofreading, marketing, media development and

graphic design, project management, research, supervision, training students/faculty

development, team building/collaboration, and technology knowledge/programming. Similarly,

a review of job advertisements paired with a survey of FSU program alumni found that job

requirements for instructional design related positions frequently included the following skills:

communications and collaboration; project management; business management; technology, e-

learning and programming; adult learning theory; practice experience in specific ID skills (e.g.

Needs assessment); online productivity software; measurement, research, evaluation and

analysis; and other practical areas such as consulting skills, change management, and negotiating

with subject matter experts and clients (Hanna, Yap, Fong, Fletcher, & Bancroft).

However, graduates may not be prepared for all of these roles. A survey of practitioners

working in a range of environments indicated that those working in ID had a variety of

backgrounds, including many with only bachelor’s degrees and others who were at least initially

self-trained in the field of instructional design, many of whom later returned for a degree in this

area (Larson, 2005). When asked about their own degree experiences, participants indicated that

programs attended varied significantly in specific courses and experiences offered. Most

programs offered similar coverage of general ID competencies (as identified by professional

organizations), ID models used in the respondents’ own practice, learning theories, and “flexible

design of learning theories, instructional strategies, and instructional models” (p. 28). However,

programs differed on the degree to which competencies related to specific types of work

environments and subject matter specific to their workplace was covered, with some programs

offering “specific environment” programs, while other programs were more generalist. Alumni

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 50

of ID programs generally indicated they were not well prepared for the “cultural aspects” of the

job, especially in terms of working with supervisors, workplace politics, use of resources, and the

expected workload.

Participants in Larson’s (2005) study were asked to identify an exemplary program. A

related study (Larson & Lockee, 2007) looked at the most frequently mentioned program, and

found that the skills emphasized were business competence (including the “ability to think, write,

and communicate orally” and the “ability to make wise use of instructional design and

technologies” (Larson & Lockee, 2007, p. 3)), communications, interpersonal relationships,

analytic competence (including areas such as critical thinking and “problem definition and

problem solving” (p. 3)), project management, business skills, and technological literacy

competence (including knowledge of recent technology, evaluation of new and existing

technology, and online teaching/designing and distance education skills). Based on this study,

Larson and Lockee point out the value of contacting alumni, employers, and practitioners “to

identify the job demands of a corporate environment and to develop educational practices that

align with those demands” (p. 21). Interestingly, their findings from this case study and related

literature point not to a list of specific skills but to the value of “preparation practices such as

case studies, authentic project work, internships and assistantships, action learning principles,

and situations designed to facilitate cognitive apprenticeships”(p. 20), which will allow students

to engage in solving complex, ill-formed problems and to develop interpersonal communication

and team-work skills as well as gaining an understanding of the cultural aspects of a specific type

of work environment. Based on their review of earlier studies, Kenny et al (2005) similarly point

out that a focus on the core skills associated with ID models is not sufficient to prepare students

for work in this field, as these models are often not used in their entirety in practice, while many

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 51

other roles are played by in-practice instructional designers. They recommend instead looking

further into what it “means” to be an instructional designer, including the ability to “make

judgments about design situations that are complex, rich, and replete with tensions and

contradictions” (p. 8).

Newer versions of the standards appear to attempt to address at least some of these areas.

For example, the IBSTPI standards aim to “cover the whole design process and the different

roles that instructional designers may assume”, although “advanced” standards may not be met

by all instructional designers, as some may focus on specific areas (Spector, 2006, p. 6). As

discussed earlier, the standards cover four main areas: Professional Foundations (including

communication and research skills), Planning and Analysis, Design and Development, and

Implementation and Management (Richey, et al., 2001). There is a recognition that new areas of

design may emerge, and that competencies should be generic enough to be customized to meet

the needs of specific organizations (Spector, 2006). The AECT NCATE accreditation guidelines

for Educational Technology and Media Support Specialist-related programs ("Standards for the

accreditation of school media specailist and educational technology specialist programs," 2005)

appear to be much more tied to the traditional Instructional Systems Design model, but do

include a set of “management” related competencies, as well as specific competencies relating to

print, audiovisual, computer-based, and “integrated” (hypermedia) technologies.

2.4.3 Software Design Roles for Instructional Designers

In an exploration of key literature in the field of Instructional Design, “including official

definitions, published professional competencies, and popular instructional design textbooks” (p.

33), Smith (2008) attempted to uncover the meaning of “design” within the field of instructional

technology. The common themes she found addressed instructional technology’s focus on

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 52

problem solving, theory, and process. Instructional technology’s grounding in data appears to

focus on humans and human systems. Smith explains that, according to the official sources,

instructional design is “characterized by subdivision and partitions”, allowing the design process

to be divided among one or more specialists (p. 133). These activities include needs analysis,

instructional analysis, learner analysis, writing performance objectives, developing assessment

instruments and instructional strategies, developing or selecting instructional materials, and the

evaluation of instruction. None of these activities appear to be focused specifically on the types

of tasks performed by software designers. The area which may align the most with the activities

of software designers is referred to in instructional technology literature as “development”,

which involves moving from specifications created in the “design” phase to specific items,

including test versions, prototypes, or mass-produced versions of physical items to be used in

instruction. Although these activities may conceivably overlap with the responsibilities of a

software designer, nothing in this description indicates that instructional technologists will be

specially prepared for a software design role.

The IBSTPI standards also do little to address the type of design and development central

to the roles played by participants in this study. The competency that seems most relevant in the

IBSTPI standards is: “Analyze the characteristics of existing and emerging technologies and

their use in an instructional environment.” The related performance components are: “specify the

capabilities of existing and emerging technologies to enhance motivation, visualization,

interaction, simulation, and individualization”, “evaluate the capability of a given infrastructure

to support selected technologies”, and “assess the benefits of existing and emerging

technologies” (Richey, et al., 2001, p. 70). The “design and development” competencies would

appear to be the most relevant to the topic of this paper. These are written to be technology-

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 53

neutral, although computing professionals would likely find themselves involved in selecting or

modifying existing materials, developing new materials, understanding end users (“learners” in

the context of instructional design standards), and evaluating and assessing their end-product.

The IBSTPI standards acknowledge specialization among instructional designers. “The

E-Learning Specialist” would probably be the specialty that most aligns with the purpose of this

study (Richey, et al., 2001). As described in the standards, an E-Learning Specialist would need

to be “familiar with a wide range of established and emerging technologies, their advantages and

drawbacks, and their effect on learner motivation and the learning process” (p. 127), and must be

able to assess new technologies to ensure they meet a project’s needs. An E-Learning Specialist

must also have “expertise in all facets of the design and development of technology-based

learning” (p 125). However, these “facets” do not appear to extend to the skills common to

software designers. Rather, they include “the use of color, interactivity, screen layout and

motivating graphics” as well as the ability to “[reduce] technical content to clear and

unambiguous format for various delivery formats”. Probably of most interest for the purposes of

this study, E-Learning specialists must be able to communicate between the design team and

non-technical specialists and management. This would seem to imply that E-Learning specialists

may be prepared to work closely with computing professionals, but are probably not expected (or

prepared) to produce complex software themselves or to provide the type of design that a

computing professional would.

The AECT’s NCATE ("Standards for the accreditation of school media specailist and

educational technology specialist programs," 2005) include under “Development” a sub-area

specific to Computer-Based Technologies, which are defined as “electronically stored

information in the form of digital data”, including “computer-based instruction (CBI), computer-

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 54

assisted instruction (CAI), computer-managed instruction (CMI), telecommunications, electronic

communications, and global resource/reference areas”. Students in an NCATE-certified program

sound be able to design and produce “audio/video instructional materials” and “digital

information” with computer-based technologies, use digital cameras, video cameras, and

scanners to produce instructional materials, and (for those preparing to become a school media

specialist), “incorporate the use of Internet, online catalogs and electronic databases to meet the

reference and learning needs of students and teachers”. Another “Development” area, “Integrated

Technologies”, includes “hypermedia environments which allow for: (a) various levels of learner

control, (b) high levels of interactivity, and (c) the creation of integrated audio, video, and

graphic environments.” Examples given are “hypermedia authoring and telecommunications

tools such as electronic mail and the World Wide Web”. Related competencies include using

authoring tools to create hypermedia and multimedia materials; developing materials for distance

education, combining electronic and non-electronic materials; using tools such as email and web-

browsers; developing “effective Web pages with appropriate links using various technological

tools (e.g. print technologies, imaging technologies, and video”); using writable CD-ROMs ; and

using software to capture on-line materials for off-line presentations.

None of these standards would seem sufficient for preparing students for the types of

roles participants in this study play. However, a review of instructional-design-related job

advertisements found that programming skills were sometimes asked for. In addition to HTML,

CSS, and related markup languages, requirements for “programming skills with Java, Java Script

and Ruby” appeared in 31 of 258 ads analyzed (Hanna, et al., p. 15). However, Hanna et al also

point out that 25 of the advertisements they reviewed “listed a degree in computer science as an

alternative to a degree in instructional systems” (p. 15). So, perhaps one might expect Software

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 55

Designers of educational software to have a background in Computer Science or other

Computing related educational programs.

2.5 Professional Interest in Educational Software

A quick online search reveals a huge amount of interest in educational software among a

number of professional groups. For example, there are multiple groups dedicated to topics

relating to the use of technology in education, such as the Association for Educational

Computing and Technology (http://www.aect.org/default.asp), the International Society for

Technology in Education (http://www.iste.org/welcome.aspx) and an online social network

group, Technology Integration in Education (e.g.

http://www.technologyintegrationineducation.com/ . Many groups focus specifically on e-

Learning, for example, eLearning Network (http://www.elearningnetwork.org/). The Institute of

Electrical and Electronics Engineer (IEEE)’s Computer Society includes a “Technical

Committee on Learning Technology”, which publishes a newsletter, conducts workshops and

conferences, and provides a forum for discussion of related technical topics

(http://www.ieeetclt.org). Of these groups, only the IEEE’s TCLT mission appears to be

primarily related to the design and development of educational software from a Computing

perspective; the while other groups focus on the instructional design aspects of designing the

software, or the use of that software in educational settings.

Recruitment for this study revealed that many software design professionals identify with

this field, including those who came from a formal background in Software Design, Instructional

Design, or other areas entirely. Chapter 4: Findings will provide details on the roles these

professionals play and what they feel is unique about working on educational software projects,

as well as exploring their formal educational backgrounds and on-the-job needs.

http://www.aect.org/default.asp
http://www.iste.org/welcome.aspx
http://www.technologyintegrationineducation.com/
http://www.elearningnetwork.org/
http://www.ieeetclt.org/

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 56

2.6 Conclusion

Expertise in design fields accumulates over time, beginning during the period of formal

education but continuing once professionals graduate and begin their careers. Lifelong learning

and self-learning strategies are important to professionals in all fields. They appear to play a

special role for those in design-related fields. With rapidly changing technologies and evolving

ideas on the best approaches to designing effective instruction, life-long learning strategies are

especially important in the fields of software design and instructional design. However, a

formal education is the foundation for professionals to build upon during their careers.

This study seeks in part to discover whether software designers working on educational

software related projects have pursued formal education within the software design or

instructional design fields, and, if so, to what extent they were prepared for their roles by that

education. An investigation of standards and readings from Software Design and Instructional

Technology related organizations did not reveal a focus on software design for educational

software in either field. Therefore, it is difficult to predict what type of formal educational

background professionals working as software designers on educational software projects will

have.

The findings of this dissertation study will provide a better understanding of the range of

formal educational backgrounds of those working in the area of educational software design.

This may lead to recommendations for enhancing Computer Science, Software Engineering,

and/or Instructional Technology programs to better meet the needs of those who will work in the

industry. It remains to be seen whether this can best be done best emphasizing general skills

which would foster good design regardless of the industry or purpose of the software in software

design-related programs, or whether a special focus on instructional design principles would be

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 57

valuable. The Software Design standards reviewed would seem to indicate that current best

practice leans towards a focus on a large set of general skills and knowledge, with an emphasis

on hands-on experience. Similarly, it would be valuable to know whether those prepared by

instructional design programs would benefit from learning more about software design principles

or the skills commonly focused on in software design related programs. The Instructional

Technology standards reviewed would seem to indicate that instructional designers may need

skills which allow them to interact with, evaluate, and choose among a variety of technologies

and need to be able to communicate with both technical and non-technical team members, but do

not appear to suggest a strong focus on software design skills.

This study also hopes to address the types of non-formal education used by these

particular software designers. The ongoing study of software designers working in a range of

industries show that most software designers prefer self-study (using books, internet resources,

and experimentation) in many situations, although employer, vendor, or third-party provided

training and access to subject matter experts are also important resources. It will be interesting to

learn whether the same methods are preferred by software designers working in instructional

design organizations. It will also be illuminating to discover whether non-formal educational

opportunities sought by these software designers are primarily focused on areas which would be

valuable regardless of industry (such as programming languages, new technologies, and general

communication skills), or whether information is sought which is particular to instructional

design or instructional design related projects. This may in turn help inform related formal

educational programs.

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 58

3 Chapter 3: Methods

As stated in Chapter 1, this study will investigate the central research question:

What formal and non-formal educational experiences do software designers currently

working in instructional/educational technology related fields report having experienced, and to

what extent do they feel these experiences have prepared them for their current roles?

This will be explored by addressing the following sub-questions:

1. What are the primary role(s) played by the participants?

2. What formal education do the participants report having had? In what ways do they perceive

these experiences have prepared them for their current role(s)?

3. Where are there gaps in the competencies (e.g. skills, knowledge, and attitudes) acquired

through the formal educational experiences of these software designers? What topics are

underemphasized by formal educational experiences?

4. What types of non-formal educational opportunities have these software designers sought or

taken part in? How do these software designers seek and select these educational opportunities

after they have joined the workforce? In what ways do they perceive these experiences have

prepared them for their current role(s)?

5. What type of formal education do participants recommend for those planning to work in this

field?

Based a review of the literature, not much appears to have been written about the specific

population being studied, although similar topics have been addressed with similar populations.

Furthermore, the population does not seem to be well defined and it is not clear how to access a

representative sample. Therefore, this study was exploratory in nature. A mixed methods

approach was used to enable me to explore the topic in both depth (through rich description as

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 59

provided by analyzing data acquired through extended interviews) and breadth (through

accessing a large and diverse group of survey participants and analyzing whether there are

statistically significant trends indicating gaps in education or areas which are best learned

through non-formal education). Comparing and integrating the results from both analyses

provided a fuller and more reliable picture of the current situation than could be obtained by a

single method alone.

This has been designed as a three-phase study. The use of Mixed Methods was chosen

for three primary purposes (as described by Creswell and Clark (2007)):

1. Triangulation Design: Compare and contrast qualitative and quantitative results, to

take advantage of the strengths of each technique.

2. Exploratory Design: Instrument development and refinement: The results of each

phase inform the development of the instrument for the following phase. In particular,

results of the analysis of Phase 1 interviews were to help shape the questions and

especially the closed-ended response options in the Phase 2 survey instrument.

Findings from Phase 1 and Phase 2 inform both the goals (what open issues need to

be addressed?) and specific questions (what are the best ways to follow up on these

issues?) in Phase 3.

3. Explanatory Design: Qualitative results are meant to explain quantitative results, and

quantitative results are meant to build on qualitative results.

In addition to these primary purposes, Phase 1 was meant to help provide ideas for Phase

2 recruitment (by eliciting suggestions as to where potential participants could be reached), and

Phase 2 was also to serve as a recruitment mechanism for Phase 3 (by offering survey

participants the option to provide contact information for follow-up interviews).

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 60

Each of these purposes aligns with an existing mixed-method model, although none of

the models explored met all three of these purposes.

According to Creswell and Clark (2007), the “Triangulation Design” is the most common

Mixed method approach. The purpose of this design is to “directly compare and contrast

quantitative statistical results with qualitative findings or to validate or expand quantitative

results with qualitative data” (p. 62). The “convergence model” variant of this design is most

similar to my original study design. “In this model, the researcher collects and analyzes

quantitative and qualitative data separately on the same phenomenon and then the different

results are converged (by comparing and contrasting the different results) during the

interpretation” (Creswell & Clark, 2007, p. 64)

In the “Instrument Development” variant of an “Exploratory” mixed method model, a

topic is “qualitatively explore[d]” with a small number of participants in order to “guide the

development of items and scales for a quantitative survey instrument” (Creswell & Clark, 2007,

p. 77). According to Creswell and Clark, this technique is always used in the development of a

quantitative instrument, and researchers typically emphasize the quantitative aspect of the study.

An “Explanatory Sequential Design” is typically a two-phased mixed methods design

which begins with collection and analysis of quantitative data and then moves to a second phase

in which qualitative data is collected and analyzed. In the “Follow-up Explanations” variant of

this model, quantitative findings are generally emphasized, and the qualitative findings are used

to explain and expand upon specific quantitative results of interest. In the “Participant

Selection” variant, the primary purpose of the quantitative phase is to “identify and purposefully

select participants for a follow-up, in-depth, qualitative study” (Creswell & Clark, 2007, pp. 73-

74)

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 61

As part of their seven-step process for selecting an appropriate Mixed Methods design,

Teddlie and Tashakkori (2009) explain that after reviewing existing models to find the most

appropriate research design, you may have to “combine existing designs, or create new designs,

for your study”, if you cannot find one that is a “perfect fit” (p. 163). When initially planning

this study, I created the representation in Figure 1, a modified version of a triangulation design,

to depict my plans for the study. This depiction was intended to show that the primary purpose

of mixing methods was to triangulate the findings. The arrows which lead from the results of

each phase to the data collection of the next indicate that the results of each phase were to

influence the development of data collection instruments of subsequent phases.

Figure 1: Study Design (Modified Convergence Triangulation Design Model)

However, in reality, my process was much less clean and more iterative. As Teddlie and

Tashakkori (2009) explain in the seventh and final step to selecting an appropriate design,

In some cases, you may have to develop a new MM [Mixed Method] design,

using flexibility and creativity, because no one best design exists for your

research project, either when it starts or as it evolves. Some MM studies change

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 62

over the course of the research, resulting in designs with more strands than

originally planned or with strands that change in relative importance. (p. 164)

 As Teddlie and Tashakkori predicted, as my data collection and analysis progressed, I

found that I needed to make modifications to my initial plan in order to optimize my use of the

limited numbers of available participants to address my open-ended research questions. Figure 2

gives a more accurate representation of the actual process followed. Mixing was both sequential

(with the results of each phase feeding into the next) and iterative (analysis of new data impacted

my understanding of data previously analyzed, inspiring additional phases of analysis). Each

phase expanded on the results of the previous phase(s). This design is probably most similar to a

“fully integrated mixed method design”. According to Teddlie and Tashakkori (2009, p. 151),

“In these designs, mixing occurs in an interactive manner at all stages of the study. At each stage,

one approach affects the formulation of the other and multiple types of implementation processes

occur”. However, data analysis of quantitative and qualitative was not truly combined in this

study (that is, data were not converted from one type to another, although interpretation of

qualitative results informed the selection of qualitative data to analyze, and patterns seen in the

quantitative data in some cases confirmed or refined my interpretation of certain elements of the

qualitative data).

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 63

Figure 2 Actual sequence of events

In interpreting Figure 2, please note that data collection was sequential (that is, Phase 1

data collection was completed before Phase 2 data collection commenced, and Phase 2 data

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 64

collection was completed before Phase 3 data collection commenced.) However, data analysis

was ongoing and iterative. This is described in greater detail in the Data Analysis section (3.5).

3.1 Terminology Used:

3.1.1 Software Designer

Although “Software Developer” or “Computing Professional” may be more applicable

generic titles (based on my reading of job advertisements and literature), I assume that the term

“Software Designer” may better convey my meaning to an audience with a background in

Instructional Design, as the term “development” conveys a slightly different meaning between

the two fields, and the term “computing” may be understood more broadly than it is intended.

Therefore, for the purposes of this study, the term “Software Designers” will be used to

describe a professional currently or recently involved in the design and/or development of

software. This includes those involved with systems/software architecture, requirements

gathering, specification writing, high-level design, low-level design, programming, user

experience design, and/or quality assurance. The Software Designers may perform additional

roles, such as Instructional Design, Project Management, or other supervisory or high-level

planning related roles, but must spend at least some time on the software design roles mentioned

here. Software being developed is primarily meant to serve the needs of a client and/or users

(rather than software designed primarily to fulfill a course requirement or as a personal hobby).

3.1.2 Computing Education

In alignment with much of the literature covered in the literature review, the term

“Computing Education” will be used to refer to degree programs in Computer Science, Software

Engineering, and similar or cross-over degrees.

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 65

3.1.3 Educational Software

While I have not found a good definition in the literature for the term “educational

software”, for the purpose of this study, “educational software” will be understood to include any

software that fosters teaching and learning, including learning management systems and lecture

capture software as well as more traditional drill-and-practice applications, e-learning modules,

and other types of software used by students to aid in learning. Software used for purely

administrative purposes in an educational setting (e.g. billing or personnel management) will not

be included.

3.1.4 Competencies: Skills, Knowledge, and Attitudes

The central research question addressed by the study asks how formal and non-formal

educational experiences prepare software designers for working in instructional or educational

technology related projects. Several of the sub-questions implicitly address the competencies

that are developed through these experiences. The IBSTPI defines “competency as “an integrated

set of skills, knowledge, and attitudes that enables one to effectively perform the activities of a

given occupation or function to the standards expected” (Richey, et al., 2001). For the purpose of

this study, the term “competency” will be used to denote a skill, piece of knowledge, or an

attitude held by a student or working professional.

3.1.5 Formal and Non-formal Education

The definitions used for “formal” and “non-formal” education align with those discussed

in the section of the literature review regarding “lifelong learning”. The related terms to be used

in this study include:

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 66

Formal Education: Education acquired directly from a college/university program. This

does not include individual courses taken post-graduation based on personal interest or employer

needs, or employer or third party sponsored training.

Non-Formal Education: Educational opportunities which take place outside of formal

college/university programs, including, but not limited to, training provided by employers or

third parties, mentorship by co-workers or other peers, and self-directed learning.

Self-directed learning: Self-study, which takes place outside of a formal educational

setting or employer or training courses provided by employers or third parties. This may involve

the use of online resources, books, manuals, journals or other publications, or the use of

techniques such as experimentation for the purposes of gaining a better understanding of a new

concept, approach, technology, or programming language.

3.2 Participants

Participants selected in any phase of the study met the following criteria, as stated in the

study proposal:

• The participant is a Software Designer. A participant will be included if the

participant’s primary role(s) focus on the design and/or development of software

(including architecture, requirements gathering, high- or low-level software design,

programming, and/or user experience design). Possible titles/roles may include software

architect, software designer, software engineer, programmer, computer scientist, database

designer, database manager, research & development (if related to software

design/development), etc. NOTE: Participants who are retired or unemployed but have

previously filled one or more of these roles were also considered eligible for

participation.

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 67

• The participant’s primary role(s) involves the development of educational

software for use either within the same organization or for external users. The primary

purpose of this software is to educate, instruct, or facilitate learning and teaching.

• The participant's software design experience is or was professional in nature. This

may include full-time or part-time employment, but does not include time spent on work

primarily intended to be a class project.

3.3 Participants

3.3.1 Phase 1: Interviews.

Participants for the first phase of this study were identified via a snowball technique,

beginning with recommendations provided by the researcher’s own personal contacts. Screening

questions were emailed to potential participants to determine whether they were or had recently

been substantially involved in the design of software used in K-12 or higher education in a

professional capacity. This included participants who played one or more of the following roles:

systems/software architecture, requirements/specification writing, high-level and low-level

design or programming (where programming tasks include some individual or collaborative

design work), and user experience design.

Nine participants who met the inclusion criteria participated in interviews (See

“Appendix F: List of Participants” for more details on their backgrounds). These included

employees from universities, large companies, and small companies (including single-person

companies) which created LMS extensions (e.g. Sakaii components) (3 participants), language

education applications (2 participants), and three individuals who worked on a lecture capture

system, e-learning application, and a web-based interactive multimedia application, respectively.

All nine participants were male.

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 68

3.3.2 Phase 2: Survey.

A number of different strategies were used to recruit participants, including posting

invitations in listservs, linkedIn groups, and other discussion forums, as well as the use of a

snow-ball technique starting with the researcher’s own personal contacts. The online

questionnaire was accessed by 215 participants, 70% of whom (151) were eligible to participate

based on their answer to the initial filtering question (“Have you ever been involved in the

design/development of software used for educational or instructional purposes in elementary,

secondary, or higher education?”). Of these, many dropped out along the way, possibly due to

the length of the questionnaire. Nintey-four (43%) completed at least some of the questionnaire

beyond the first question, and 74 (34%) completed the entire questionnaire.

Of participants who completed the entire survey, 74% (53 of 74) currently worked in the

United States, 5% (4) worked in the United Kingdom, and the rest were from various other

locations around the world. Formal education levels varied between one non-high school-

graduate to 44% (38 of 87 who reached the relevant question) with doctoral degrees. As

mentioned in the limitations section, participation may have been skewed by the relatively high

participation of members from academic listservs).

3.3.3 Phase 3: Follow-up Interviews

The purpose of Phase 3 was two-fold: (1) To clarify any gaps or discrepancies between

Phase 1 and Phase 2 findings; and (2) to interview participants who fit profiles identified in

Phase 2 which were not represented during Phase 1. Therefore, Phase 3 participants are a subset

of those who participated in Phase 2. Forty-four Phase 2 participants indicated their willingness

to participate in a follow-up interview. Each of these participants was sent a personalized email

(see the Procedures section for more details). Of these, one turned out to be a Phase 1 participant

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 69

and was not sent an email. Two others were not contacted because based on a mismatch between

their demographic characteristics and the specific questions I was addressing at this stage.

Participants were given the option to respond to questions via email (with follow-up

conversation via email), or to schedule a real-time phone or Skype interview.

Of the 41 who were contacted via email, six initially responded. One wished to schedule

a real-time interview but scheduling did not work out. Another responded, but responses

indicated that his primary roles did not meet the criteria for inclusion in the study and his

responses to these questions were not relevant to the roles discussed in this study. The other four

participants responded to questions via email, and three of four responded to follow-up

questions. Therefore, there were a total of four participants in Phase 3.

3.4 Procedures

3.4.1 Phase 1: Interview Procedures

The semi-structured interview protocol was reviewed by members the research

committee (as part of the dissertation proposal process) and by peers with experience in this area.

As recommended for a naturalistic inquiry, I developed myself as a “human instrument”

throughout the interview processes (Lincoln & Guba, 1985). This allowed me to use my own

tacit knowledge and previous experiences to guide the adaptation of questions during the

interview based on what the participant seemed to be saying (either by taking questions out of

order or rewording or modifying them as appropriate to the participant’s own train of thought

and based on the participant’s experiences. For example, if a participant had not taken any

computing courses as part of university degree(s) he had attained, I would leave out the section

on what was learned from computing-related courses and focus more heavily on what he felt he

had learned or gained from “unrelated” courses that may have helped him in his future career).

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 70

The protocol was clarified and added to as interviews proceeded and early analysis was

conducted. Therefore, different participants responded to slightly different questions.

The semi-structured interviews were conducted over the phone or via Skype, and were

recorded, with participants’ permission. Although participants were initially informed that the

interview would take 30-40 minutes, if the interview was not completed within that time, the

interviewer indicated that the requested time was up and asked whether participants were willing

to continue. All participants elected to continue. At the end of the interview, participants were

asked whether they would be willing to participate in member checking. Eight of nine Phase 1

participants indicated they would be willing to participate.

Interview data was transcribed. Every word was recorded as said if possible. Verbal

ticks such as “um”, “uh”, and repeated words were left out of the transcription unless they

indicate thought (e.g. if the speaker paused for more than a few moments after saying “um”, the

“um” was recorded). If individual words or phrases could not be understood after multiple

passes, these were marked in brackets. The missing data did not generally impact my ability to

follow the participants’ meaning. After transcripts were completed, personally identifying

information (such as employer names) were replaced by codes (e.g. <employer: university> for a

participant who works at a university).

Transcriptions were completed on all interviews, with the following exceptions:

1. One was not recorded, but extensive notes were taken. The notes for this interview

were sent to the participant, who made some corrections or additions directly to the

notes. This version was used for analysis.

2. One section of one additional interview turned out to be missing. By the time this was

discovered, the interview had taken place over a year earlier and it was unlikely that

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 71

the participant would recall his original words. Because of the researcher’s style of

note-taking (an attempt at verbatim transcription), notes were fairly complete.

However, no direct quotes will be used from this section.

Audio recordings will be destroyed once the dissertation has been successfully defended,

indicating that I have no additional need for them. Transcripts were initially created in MS Word

(where participants were identified through initials only, which would allow the researcher to tie

transcripts to emails and contact participants if necessary prior to completion of the analysis),

then transferred to the QSR International’s NVivo 9 qualitative data analysis software (hereafter

referred to as “NVivo”). Personally identifying information (such as the name of employers)

was omitted from the version stored in NVivo, and the MS Word documents will be erased after

the dissertation has been defended and I no longer need to link these to specific participants (e.g.

for the purposes of member checking or follow-up questions). Participants were assigned to

codes which replaced their initials within the NVivo system.

3.4.2 Phase 2: Survey Administration

A preliminary Phase 2 survey was provided as part of the dissertation proposal. This was

modified based on findings from Phase 1. The adapted survey was reviewed several times by the

committee chair, after which the following activities occurred:

1. A paper-based version was pilot-tested on a fellow graduate student with similar

demographics as my target population. A think-aloud protocol was used, along with a follow-

up interview. A number of weaknesses were revealed, including several questions which

were not interpreted as I had intended. The survey took over an hour to complete, which was

identified as a major issue.

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 72

2. The paper version was revised, and then reviewed by another member of my committee.

Modifications were made to streamline the survey.

3. The revised survey questions were entered into the “Survey Monkey” system. It was tested

by myself and a volunteer. We each entered realistic data several times in order to ensure that

skip-logic and other functionality worked properly.

4. The web-based survey was pilot-tested on a fellow graduate student with similar

demographics as my target population. Once again, a think-aloud protocol and follow-up

interview was used. The survey continued to take longer than the target 15-30 minute

timeframe.

5. I revised the survey once again, removing one question set, which may be used in a future

study, and reorganizing other questions to make the survey experience flow better. The

previous volunteer tested the survey again and discussed possible revisions with me.

6. The final draft version was piloted by three graduate students with demographics similar to

the target population. One of the three had already participated in a pilot of the paper version

– the other two had not previously seen the survey. The survey was taken on their own PCs

and they recorded the time it took, then gave me feedback.

7. The final draft version was also reviewed by a peer who had worked with me on a related

study, and the previous volunteer, after discussing the results of the pilot testing.

8. The survey was revised based on feedback from the reviewers and the pilot test results, then

was reviewed a final time by my committee chair.

The final version of the survey can be viewed in Appendix B: Phase 2 Survey instrument.

The survey was administered via the SurveyMonkey online survey hosting system

SurveyMonkey (http://www.surveymonkey.com). This site provides password-protected

http://www.surveymonkey.com/

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 73

security, as well as features allowing for a survey to be easily created and updated, and for

results to be exported.

Two forms of invitation were sent out. One was directed to potential participants. The

other was directed to people who might have contact with potential participants (such as

instructional designers). On the final page of the survey a link was provided which could be

forwarded to others who might be interested in participating. A unique link was generated by the

SurveyMonkey system for each contact mechanism I attempted (e.g. each linkedIn group, list-

serv, discussion forum, etc.) This did not allow me to identify individuals, but did allow me to

review how effective each recruitment method was.

Participants were contacted in a variety of ways, including invitations sent to list-serves,

organizational mailing lists, and to personal contacts who were requested to send the invitation

on to those who match the target demographics. In order to do this, I became a member of a

number of groups and listservs. In determining whether a group was appropriate, I first looked at

the group description and the ongoing discussions (if available to me). I then reviewed the rules

(if available) and existing posts. If the rules appeared to allow general topic posts by members

and/or I already saw invitations for participation in other surveys or polls, I posted the

appropriate invitation. If not, I wrote to the group owner or manager to ask whether I could post

my invitation. Not all owners or managers responded within the timeframe during which I was

collecting data. A few of them posted to the listserv for me. I also located a number of

organizations which provided lists of educational software companies. I emailed or filled out

contact forms, requesting that the invitation be forwarded to individuals who might be eligible or

interested in participating. Finally, as mentioned earlier, a message on the last page of the survey

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 74

included an invitation that could be copied and forwarded to friends who might be interested in

participating.

Participants who completed the survey could indicate they were willing to participate in

follow-up interviews by providing an email address through which they could be contacted. As a

thank-you for participating, participants could additionally provide an email address to be

entered into a pool for a gift-certificate. Participants were given the option to provide their email

address separately for each of these purposes, and some elected to volunteer for the interview but

not sign up to enter the pool, and vice-versa. These email addresses were used only for these

purposes, and not viewed while analyzing survey data.

One gift-certificate was sent to a participant. All email addresses provided for this

purpose were entered into a spreadsheet. A volunteer was asked to select a number, and the email

address on the row corresponding to that number was selected. The first participant contacted did

not respond to my initial or follow-up email. Therefore, the procedure was repeated and a second

participant was chosen. This participant responded, and received the gift certificate via email.

3.4.3 Phase 3: Interview Procedures

An individualized email was sent to each potential Phase 3 participant. The email invited

these participants either to respond directly to the interview questions (included in the body of

the email), or, if preferred, to schedule a time for a phone or Skype call. The email option was

given in order to allow participants to respond when it suited them, avoiding the scheduling

issues which had reduced participation in Phase 1.

Each email message was tailored to the individual recipient and included the questions I

wished to cover, based on that individual’s demographic characteristics and on specific

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 75

responses to survey questions. Questions covered some or all of the following areas, depending

on the individual’s survey responses:

1. General clarifications (e.g. for participants who indicated they had a PhD but no

other degrees, I asked whether they had any previous degrees. For participants who

indicated their current title was “Assistant Professor” or “High-school Teacher” but

who also design and develop software, I asked more about the role that software

development plays in their job).

2. Specific questions regarding Computing- or Instructional Design- related degrees

that had been completed after 2005. This was addressed for three main reasons: (1)

Recent graduates were not a group included in Phase 1, (2) I wished to gain a better

understanding of differences seen in statistical data between recent grads and others,

and (3) I wanted to understand what is being done in current programs, so that

recommendations would accurately address what is already being done well or could

be improved based on other findings. These questions:

a. Specifically asked about group and real-world projects done as part of the

program

b. For those with a Computing background only, asked about domain-specific

experiences

c. For those with an Instructional Design or related background only, asked

whether programming or other technical matters were covered

Table 5 and

Table 6 show examples of questions written for a recent Computing graduate and

a recent Instructional Design graduate, respectively.

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 76

Table 6 also includes an example of a clarifying question regarding the formal

educational background reported by the survey participant.

3. Specific areas covered well by programs. The purpose was to attempt to gain insight

into differences between groups seen in statistical comparisons.

In order to keep the question list to a reasonable length, I narrowed the items in this

section down as follows: After identifying items that had statistically different

responses between groups (based on educational background or experience level), I

omitted items that had obvious reasons (e.g. it is clear why participants with a formal

education in a Computing related field had, on average, more coverage of

programming languages than those without it). Other items were combined or

omitted. For example, self-learning related items were combined into one item, “teach

yourself things you need to know”, and communication related questions were

combined into one item addressing “communication skills”. This resulted in the

following list of items:

1. Maintaining code over time

2. Legal aspects of industry

3. Business aspects of industry

4. Interface design and user experience design principles

5. Designing and Developing INSTRUCTIONAL software

6. Teach yourself things you need to know

7. Communication skills

8. Work well in teams

9. Working directly with users

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 77

10. Testing practices

11. Education theory courses

12. Designing and developing instructional software

Although statistically significant differences were not seen in the following items,

they were also included, because they had emerged as crucial skills in both qualitative

and quantitative analyses.

• Critical thinking

• Problem solving

For each participant, only the items that the individual marked as having been

prepared “very well” by their formal education were included. Additional questions

asked whether their educational experience was particularly good or particularly lacking

in any other areas. Examples of questions are included in

Table 7.

4. Ideal degree program. For each person, I asked follow-up questions on their

recommendations regarding an “Ideal bachelor’s degree program.” I reminded them

of their answer, then included follow-up questions which addressed the following

areas:

a. Follow-up questions where something was unclear, or where I was interested

in learning more about a specific response (e.g. “what do you mean by ‘art’?

why do you feel it is important?”)

b. A question asking them what roles they believe this program would prepare

someone for. This allowed me to determine whether their suggestions were

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 78

intended to inform a general program for “Software designers of educational

software” or were intended for a more narrow audience.

c. Questions exploring the degree to which they agreed with various program

traits which emerged as themes in the data. In many cases, only a handful of

participants specifically addressed these areas, but statistical data and my own

impression from earlier interviews led me to believe that if they had been

asked directly, the majority of individuals would agree that most of these traits

should be included in such a program. I also was interested in learning how

they believed that these traits could be incorporated into a program.

An example of an individualized Phase 3 interview email can be found in Appendix C: Phase 3

interview protocol: Sample of a personalized email.

Table 5: Questions asked to recent Computing graduate

1. Did any of your coursework the degree you received in 2007 involve engaging in real-
world or realistic projects? If so, could you briefly describe what these projects entailed
(e.g. duration, type of project, group vs individual project, whether it was for a real client
or a hypothetical problem)? Was this helpful in preparing you for your current or
previous professional role(s)?

2. During that degree, were any courses or activities focused on one or more specific
domain (e.g. “Educational Software”, “Games”, etc.)? Was this valuable in preparing you
for y our current or previous professional role(s)? If so, why?

Table 6: Questions asked to recent Instructional Design graduate who did not include any degrees prior to a PhD

1. In your survey response, you indicate that you received a doctoral degree in 2007. You
also indicated that your majors included Educational Technology/Instructional Technology
and Educational Leadership, with a minor or specialty in a physical science. You did not
indicate any other degrees. Is this accurate?
2. Did any of your coursework the degree you received in 2007 involve engaging in real-
world or realistic projects? If so, could you briefly describe what these projects entailed
(e.g. duration, type of project, group vs individual project, whether it was for a real client
or a hypothetical problem)? Was this helpful in preparing you for your current or

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 79

previous professional role(s)?
3. Were any courses or activities focused on programming or related skills included in your
Instructional Design-related degree? If so, what did this entail? Was this helpful in
preparing you for your current or previous professional role(s)? If so, how?

Table 7: Questions relating to areas well-covered by an individual’s formal educational experiences

1. In your survey response, you indicated that degree program(s) you attended did
a good job at covering the following areas. For each, could you please briefly
indicate how this skill or topic was covered or fostered within the courses you
took?

a. Designing and developing instructional software
b. Testing skills
c. Ability to work well in teams
d. Critical/analytical thinking
e. Problem-solving skills

2. Were there any other areas relevant to your current professional position you
feel the program(s) you attended excelled at?

3. Were there any experiences that you felt were really lacking in your own
educational background?

Table 8: Questions relating to an "Ideal bachelors program" (this is an example of questions written based on a
specific response)

As you may or may not recall, the survey included an open-ended question regarding your
suggestions for an “ideal bachelor’s degree program to prepare someone for your current
position”. I have a few follow-up questions on this topic.
As a reminder, you indicated that the best type of degree would be an Instructional
Systems Technology/Instructional Design degree. You indicated that it is not important
for students to have a domain-specific background. You also indicated that a background
in programming and other technical aspects of software design/development is important,
but not as important as a background in education or instruction.
When asked for other useful program traits, you responded: "Educational Psychology &
Learning Theory Instructional Design I and II Computer-Based Software Design, Human
Computer Interface Design & Testing, Instructional Simulation Design, Game Design
Human Performance Assessment/Measurement Consulting, Project Management
Technical Writing Advanced Algebra, Advanced Geometry, Linear Equations, and
Calculus (for some simulation programming)"

1. The question asked you to address the program in terms of preparation for
“someone in your current position”. What type of roles do you believe this type
of program might prepare them for?

2. Do you feel that game design and the mathematics courses you recommend
(which you indicate are useful for simulation programming) should be required

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 80

in all ID/IST programs? Or would these courses form a specialization area?
3. Similarly, do you feel that Human Performance topics should be covered in

courses included in every ID degree?
4. Individuals who participated in the survey indicated that the following areas are

important in developing an ideal program. To what extent do you believe that
each of these should be incorporated into the program? Do you have any
additional suggestions on good ways to incorporate these competencies into a
degree program?
• Foster creativity
• Foster critical thinking skills
• Develop artistic or visual design skills
• Foster the ability and interest in continuous on-the-job learning
• Gain experience with skills and tools used in real-world problems on the job
• Give lots of practical experience
• Provide a solid foundation in software engineering theory and practices
• Provide a solid foundation in software development/programming theory

and practices
• Provide a solid foundation in instructional design theory and practices
• Provide a solid foundation in user interface design theory and practices

5. Is there anything else you would like to add on this topic?

If a participant responded via email, I wrote follow-up questions on areas that had been

unclear or particularly interesting in the earlier message. In several cases multiple rounds of

follow-up questions and responses occurred. The resulting discussion was similar in pattern to a

transcription of a real-time semi-structured interview, although responses tended to be more

concise and on-topic than in Phase 1 verbal interview transcripts.

3.5 Data Analysis

The data analysis was performed in stages after each phase, as described in the following

sub-sections.

3.5.1 Qualitative Data Analysis

3.5.1.1 Overview of Qualitative Data Analysis Procedure

Qualitative data included: Phase 1 interview transcripts, responses to open-ended items in

the Phase 2 survey instrument, and responses to Phase 3 “interview” emails (which included

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 81

responses to both initial questions and follow-up questions, as addressed in a chain of emails

with an individual participant).

Qualitative data analysis was conducted using the Constant Comparative Method for

Naturalistic Inquiry (Lincoln & Guba, 1985) to find common themes within and across data

collected from each of the three phases. Lincoln and Guba’s technique includes the following

steps (paraphrased, relevant material on pages 344-350):

1. Unitize the data, by breaking the text up into units that can stand on their own. Each

data unit should be transcribed on an index card.

2. Categorize the data, as follows:

a. Select an initial card from the pile. This will be the first card in the first

category.

b. Select the second card and determine whether it is a “feel-alike” for the first

card. If so, add it to the initial category, by stacking it on the first card. If not,

the second card begins the second category.

c. Continue this process with all successive cards.

d. Retain cards that appear to be irrelevant in a separate pile.

e. Once categories have reached a critical size, write propositional statements to

characterize the cards. Transform these into rules for inclusion for each

category.

f. Continue with steps c-e until all cards have been exhausted.

g. Review the entire category set, as follows:

i. Go through the “miscellaneous” pile, to determine whether cards

should be moved into existing categories.

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 82

ii. Review categories to determine whether they overlap.

iii. Review categories to find potential relationships between them. Mark

missing, incomplete, or unsatisfactory categories for follow-up in

further data collection and data analysis.

h. Perform additional data collection relating to categories identified as missing,

incomplete, or otherwise unsatisfactory in step 2.g.iii.

i. Determine when to stop based on exhaustion of sources , saturation of

categories, emergence of regularities, and overextension

j. Review the entire category set once again to ensure nothing has been

overlooked.

I have used this process on previous projects and it has worked well. However, for this

study I decided to use the QSR NVivo data analysis software, after some initial exploratory

coding done by hand using margin-notes. Using the NVivo software required me to make a

number of modifications to this technique. The software allows a hierarchical model to be built

and rearranged on-the-fly as data is reviewed and coded. Therefore, unitization and

categorization occurred simultaneously, as I created a new “node” (or added to an existing node)

once I identified a unit. Each node was given a unique name. As the number of nodes grew, I

began combining them into categories and super-categories. Figure 3 shows how the node

hierarchy is displayed and managed within the NVivo software (note: only one set of nodes is

fully expanded here).

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 83

Figure 3: Node Hierarchy in NVivo software

As the analysis proceeded and additional data was added, new types of categories began

to emerge and the definitions of some categories created earlier were modified. I re-visited all

pieces of data multiple times as node definitions changed. External reviews of my coding

hierarchy (discussed more in section 3.5.1.3) caused me to re-think some categories, after which

I also did an additional pass through the data. Approximately a dozen full or partial passes were

made through the data over time, in addition to some initial tentative coding I did by hand on the

first few Phase 1 transcripts, and another by-hand pass done on the open-ended Phase 2 data

prior to importing it into Nvivo.

3.5.1.2 Unit of Analysis

The unit of analysis used was a text segment that stands alone as a single coherent idea.

These segments varied from a single word or sentence to one or more paragraphs. For example,

the following segments were both coded within the code hierarchy as: “Ideal Program

TraitsProgram FeaturesTraits to foster in graduatesCommunication

SkillsCommunication fostering collaboration and team-work”.

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 84

Segment 1: “collaboration” (Survey Participant #71). NOTE: this was in response to a

question regarding traits of an “ideal program”. The full response given by this

participant to this open-ended question was: “collaboration, creativity, problem solving”

Segment 2:

I don’t regret one minute I spent as an English degree student, because

those skills have helped me to communicate with my supervisors, with my

peers, with my subordinates, with customers…I mean, I could not have

taken, in my opinion, a more valuable skill into the workplace.

Because I’m an effective communicator, I feel like I’ve been given

more opportunities to participate in strategic circles, because a lot of the

people who strategize don’t necessarily know how to communicate, and

they sort of invite you in because they know that you’ll do a good job of it

and then suddenly you’re sitting at the table. I may be overstating this a

bit, but I really do feel strongly that it’s made a big difference in my

career.

(Interviewee 9).

Because of the richness of the data and because my research questions required me to

look at the data from multiple perspectives, a block of text might be coded in multiple

overlapping nodes. For example, the following transcript segment included a number of

overlapping codes:

So, the easy answer I have is that…is kind of to harp on what I think is failing in

CS curriculum, which is that…<sighs> the hardest part of working in software

development, and especially web development, is knowing how to work with

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 85

other people and communicate with other people. There are lots of people who

have great theory…whether that’s even user exp designer theory, so, ok, I’m a

user-centered designer, I studied in school, I kind of know what the processes are,

or whether it’s, oh, I’m a great coder, and I know how to code, and I can, you

know, write a great algorithm, but I think it’s much rarer to find people who know

how to work with other people and work on a project and organize their time, and

think about problems in…in creative ways, and in ways that break the problem

down into manageable pieces. So, for me a big part of the education that people

need to do great software design and development is really an education about

how to work with other people, and how to work on projects. Great project

management skills, great work skills, great communication skills. These are so

critical. (Interviewee 3)

 In this example, “kind of harp on…with other people” and “it’s much rarer to find

people who know how to work with other people” are both coded under the node “Existing

programs do not do well atcommunication and people skills”. “There are lots of

people….pieces” is coded as: “Existing programs do not do well atPractical aspects of the

job”. A number of additional themes were identified that were added to program traits as part of

the section on “Ideal Program Traits”. For example, portions of this segment address

communication skills (“knowing how to work with other people and communicate with other

people”), project management related skills (“work on a project and organize their time” and

“ways that break the problem down into manageable pieces”), creativity (“think about problems

in…in creative ways”), and so on. In all, eight codes were applied to various portions of this

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 86

segment, with 2 or more overlapping codes in some areas. Figure 4 shows how this coding looks

within the NVivo software.

Figure 4 Coding overlapping nodes in NVivo

3.5.1.3 Coding Data from each Phase

After some initial rounds of coding on paper, Phase 1 interview transcripts were imported

into the NVivo software and coded. Some categories that emerged from this data (such as

demographic data regarding participant roles, types of degrees held, and types of software

created) were used primarily to inform the development of the Phase 2 survey instrument and

were later omitted from the overall coding hierarchy. The remaining categories were added to

and modified as Phase 2 and Phase 3 data were added and subsequent rounds of analysis were

done.

The open-ended responses to Phase 2 survey questions fell into two categories.

1. Responses to “Other (please specify)” prompts for closed-ended questions. These

were analyzed individually (that is, only responses to an individual question were

combined. This was done for the most part in MS Word documents, as the

sophisticated NVivo tool was not needed in these cases).

2. Responses to open-ended question relating to traits of an “ideal bachelors program

for someone working in your role” and responses to related questions (including

those regarding the type of degree, whether the degree should be domain-specific, and

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 87

whether programming and other technical aspects of the work should be covered as

part of the degree). The responses to the closed-ended related questions were coded

as if they were text, along with responses to “other (please specify)” for these specific

questions. This was done so that this set of data could later be compared and

combined with Phase 1 data on the same topic (see below). An initial pass was made

through all of these items on a paper printout to get a sense of the data. Then, data

was entered into the NVivo qualitative analysis software. Each participant was treated

as a case. For each participant who completed the “ideal program” questions,

demographic data (including level of experience) was entered as “attributes” for the

related case. Ideal program-related data was coded within the Nvivo system. Themes

were allowed to emerge naturally through the analysis, and were combined and re-

arranged in a coding hierarchy as coding progressed.

The Phase 1 and Phase 2 hierarchies were reviewed by my dissertation committee chair,

and additional revisions were made. This primarily included splitting apart several sub-categories

and merging others. Themes were re-named in order to clarify their intent.

Once these revisions were completed and an additional pass had been made through each

set of data, the two hierarchies were merged into a single coding hierarchy for the entire data set.

In the process of merging these two hierarchies, I discovered that there were a lot of overlaps

between the major categories “Valued in own Formal Education” and “Recommendations for

Ideal Degree Program”. “Valued in own Formal Education” consisted of items that participants

indicated were especially valuable or useful in their own formal educational experiences, while

“Recommendations for Ideal Degree Program” included specific recommendations for courses,

topics, and traits that should be included in a hypothetical “ideal” program. In some cases, it was

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 88

actually difficult to determine in which of these two areas a text should be coded, as participants

regularly spoke about what they wish had been included in their own formal education, or

referred to valuable aspects of their own formal education as examples of what should be done in

an ideal program. Merging these together created a richer and better-organized single hierarchy.

Similar choices were made at a smaller scale elsewhere within the data as it was re-reviewed at

this stage.

The coding hierarchy was exported into a pdf file and sent to a peer with expertise in this

area. This colleague has work experience in this area, has collaborated with me on related

research projects, and is currently a faculty member in a Computer Science program. She also is

very familiar with Computer Science-related standards, because she is currently involved in a

curricular redesign. A summary of her feedback, which she has reviewed and approved, is

included in Appendix D: Notes from external review of coding. Based on her recommendations,

a few small changes were made to the coding hierarchy. She gave me feedback on a few areas I

had specific concerns about (specifically, overlapping codes, and the merging of the “Valued in

own Formal Education” and “Recommendations for Ideal Degree Program” categories). She

also indicated that she felt that the coding structure “rings true” overall.

A small set of sub-categories was also sent to a peer with expertise in a specific area to

review. Her recent research relates to the development of Design Judgment. I sent her a list of

the nodes that I had categorized under “Skills and Knowledge Important on the JobDesign

Judgment”, and “Ideal Program TraitsProgram FeaturesTraits to foster in graduates”.

Because this concept is difficult to grasp, her review was very helpful in identifying specific

nodes that I felt belong in this area but did not truly meet the criteria.

All recommended changes were made.

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 89

Because only four cases were included in Phase 3, I elected to simply merge this data

directly into the existing hierarchy. A few additional themes arose from this analysis, as well as

from changes made after reviews by knowledgeable peers. Therefore, I did a final pass through

the Phase 1 data to ensure that I captured any areas relating to these themes.

Finally, I created an outline of all qualitative findings to be used in the “Findings”

section. In creating the outline, I revisited the contents coded under every node. This revealed

additional areas where node names could be clarified or nodes should be merged or divided.

These changes were all at the lowest level of nodes; no necessary changes were identified to the

overall hierarchy at this point.

3.5.2 Quantitative Data Analysis

A number of statistical procedures were used to analyze numerical data collected by the

survey instrument.

Quantitative data was analyzed using descriptive statistics. Counts, means, and medians

were used to describe characteristics of the sample or interesting sub-groups within the sample.

Some calculations were provided by the SurveyMonkey system itself. Others calculations were

performed within Microsoft Excel.

Differences between groups on binary items (such as roles played, which were entered as

Yes/No for each role) were compared using a two-way contingency table analysis, which

involved the application of a χ2 (Pearson Chi-square) test and use of a phi coefficient for

estimating effect sizes (Green & Salkind, 2008). These statistics are used to “obtain an

approximate test of the null hypothesis that two variables…A and B are statistically

independent… [that is] the probability of A occurring is unaffected by the occurrence of B”

(Kirk, 1999). In this case, these tests were used to determine whether membership in a group

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 90

(such as “those who had a background in Computing”, “those who had a background in

Instructional Design”, “those who had a background in both”, and “those who had a background

in neither”) correlated with participants’ likelihood of playing specific roles, reasons for working

in this field, impressions of skills needed for working in this field, and so on.

Non-parametric statistics were used to look for statistically significant differences

responses on paired questions both for the sample as a whole, and between groups within the

sample. These were primarily used to evaluate responses on unipolar 3-point Likert-type scales

which were used to indicate the importance of various skills and knowledge on the job, and the

degree to which these skills and knowledge were covered in formal education. These include the

Mann-Whitney U test, Independent Sample Kruskal-Wallis, and Wilcoxon Signed Ranks. These

tests were conducted using IBM ® SPSS 18 ®3. These statistics, which compare ranks rather

than means, “are useful for problems that include one or more variables measured on a nominal

or ordinal scale” (Green & Salkind, 2008, p. 349), and in cases where “the distributions of the

test variable for the two populations do not have to be of any particular form (e.g., normal)” (p.

378), as is the case in this study. (In fact, I expected that the distribution would be skewed on

some items. For example, as I anticipated, nearly all participants indicated that “critical thinking”

is very important in a job in this field, with the result that a 3 on a 3-point scale was a near-

universal score for this item across all groups).

3.6 Member Checking

Eight of nine Phase 1 participants and three of four Phase 2 participants indicated their

willingness to participate in member checking. Each of these individuals was sent a draft of the

dissertation manuscript, with a request to review chapters 4 and 5 (the Findings and Discussion

3 Although data was ordinal, the SPSS software was not able to run non-parametric tests unless dependent

variables were entered as “scales”. It was verified that this was the correct procedure.

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 91

sections) and to indicate whether they felt that “my report is generally true to your own

experiences and understanding of the area of educational software design and development.” Up

to this point, only two individuals have responded. Their responses are included in full in

Appendix E: Member checking. As you can see, these individuals were satisfied with my

interpretation of the data and gave only minor recommendations. All recommendations were

incorporated into the final version.

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 92

4 Findings

The findings will be divided into four main areas, which cover the following topics:

1. What it is like to work in “educational software design”, including how they choose

to work in this area, what type of organization they work in and what type of software

it develops, and what roles they play in their current position. This helps explain and

contextualize the roles played by participants, addressing the first research question.

2. Formal education, including a general discussion of the types of degrees held by

participants, and a comparison of participants from four major types of backgrounds.

3. Skills and knowledge needed on the job. Describes the types of skills and knowledge

that are important to participants’ current roles. Skills and knowledge unique to

educational software design are highlighted in a final sub-section.

4. Formal educational preparation for the job. Summarizes the educational experiences

of participants, and highlights gaps between what is important on-the-job and what

was actually covered as part of formal educational programs.

5. Recommendations for an ideal undergraduate program. Discusses participants’

recommendations for the “ideal” program to prepare students to work in this field.

Quotes provided in this section are derived from an analysis of both interview and open-

ended survey data. Within the Findings section, you can identify phase 1 interviewee’s

comments because they are marked with an “I” followed by a number. For example, “I7” stands

for the seventh Phase 1 interview participant. Survey responses are marked with an “S” followed

by a number. For those that participated in a follow-up interview, comments typed into the

survey itself are marked with an “S” (for example, “S73”) while follow-up interview comments

are marked with an “S” and followed by the word “interview” (for example, “S73 interview”).

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 93

Appendix F: List of Participants includes a table which summarizes information about the nine

phase 1 interviewees and 31 phase 2 survey respondents who were quoted directly within the

body of the text as a reference to their characteristics for readers who want to place the quotes in

context.

4.1 Working in “Educational Software Design”

In order to understand the roles played by software designers in this industry in context, I

asked participants questions about why they choose to work in educational software design, as

well as about their employer and roles they play on the job. These topics are discussed in the

following sub-sections. Because the survey had a larger number of participants with a broader

range of backgrounds, the majority of findings discussed here are from the survey, although

interview findings as well as open-ended survey responses are used to illustrate interesting

points.

4.1.1 Reasons for choosing to work in “Educational Software Design”

Participants gave a range of reasons for choosing to work in this domain. Table 9 shows

survey participates’ responses to this question (closed-ended responses were based on themes

discovered during analysis of Phase 1 interview transcripts). Participants could choose as many

answers as they wished, and the majority had multiple reasons. As you can see, an ongoing

interest in education is common among participants of all backgrounds. As one interviewee

explained:

I have always been interested in how computers can be used as tools for people to

better understand their world and their environment. Whether as a communication

medium or through groupware or through education. So, I’ve always had an

interest in education. (I3)

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 94

Others saw a need for a particular type of software and began their own business, or began

consulting for schools or other educational institutions. Participants felt that working in this area

is very motivating because it makes them feel needed and valued.

I’m very motivated to make a difference in education, and I’m not satisfied with

making a difference in one classroom. I want to make a difference at a much

higher level of impasse and one of the things that really attracts me about the

position I’m in is there are 60,000 students taking the courses that I create… my

team and that’s very, very professionally satisfying to me. (I9)

Those who work in higher educational institutions in particular mentioned that they choose their

current position because of the good working environment, which offers good hours, stability,

and a chance to work in a “lifelong learning type environment” (I2).

Table 9: What caused you to begin working in educational software design/development?

 Percent Counta

Ongoing interest in education/educational support 68% 56
Interesting design problems 52% 43
Background in instructional design 30% 25
Makes me feel needed/valued 29% 24
Good working environment 21% 17
Lots of experience in the educational software industry 16% 13
Contacts in the industry 15% 12
Just a job I found 13% 11
Other (please specify) 20
an = 82. Participants were directed to “Choose all that apply”

Other reasons mentioned by individuals included enjoyment of the varied nature of the

job and an attraction to the medium worked in, for those who began in education or other areas.

For example, one interviewee who had an educational background in Classical Languages as

well as Educational Technology explained:

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 95

When PCs came along in the early 80s and offered the option of working on your

own… not having to deal with these punch cards, but also being able to work on

your own, at your own pace, work ahead if you needed to, seemed like a really

attractive option to me. I guess I am more of an independent learner myself,

which is why it did appeal to me.” (I5)

Based on his experiences working on educational software as part of his graduate assistantship,

he now runs his own software development company, focused on software supporting learning

Latin, Greek, and related topics.

4.1.2 Organizations worked in.

A set of questions addressed the types of organizations survey participants worked for

and the roles they play on the job. Although this may not be proportionally representative of the

field as a whole, I was pleased to see that companies of all types (Table 10) and sizes (Table 11)

are represented, and that these companies develop educational software of many different types

(Table 12). Participants are fairly evenly divided between educational software development

companies, universities, and other types of organizations (either corporation that produce other

types of products in addition to educational software, or educators developing software for use in

their own classrooms or schools).

Table 10: Current Employment: Organization Type

 Percent Counta

Educational software development company which focuses on software used in
higher education

8% 7

Educational software development company which focuses on software used in k-12
school settings education

14% 13

Educational software development company which creates software for use in
multiple contexts

14% 17b

Department within a larger company which produces some educational or
instructional software

11% 8c

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 96

Department in a university which develops software primarily intended for use in a
distance education program

4% 4

Department in a university which develops other types of software for use at that
university or across universities

12% 11

Department, research center, or other group in a university which develops
educational software for use in educational settings outside of the university

14% 13

Other (please specify)d

University department (for own/student use?) 7% 6

K-12 school 3% 3

Works in multiple settings 3% 3

Other 7% 6

an = 92, b Added one item from open-ended “other” field which fell into this category, c Added two items from open-
ended “other” field which fell into this category, dCoded responses from open-ended “other” field

Table 11: Current Employment: Size of company/organization

 Percent Counta

Single-person business or independent contractor 13.0% 12

Less than 5 employees 9.8% 9

6 - 20 employees 10.9% 10

21-99 employees 15.2% 14

100 – 499 employees 13.0% 12

500 or more employees 34.8% 32

Don't Know 3.3% 3

aN=92

Table 12: Current Employment: Type of Software Developed

 Percent Counta

Learning Management System (LMS) or Course Management System (CMS) 36% 33

Components that reside in a LMS/CMS 37% 34

Drill and practice application 26% 24

Self-paced instruction (stand-alone application) 25% 23

Self-paced instruction (web-based) 47% 43

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 97

Educational interactive simulation 37% 34

Educational game 35% 32

Software not used for educational/instructional purposes 25% 23

Other (please specify)b

Tools for teachers (curriculum development and sharing, attendance, whole
class instruction tools)

7% 6

Assessment 3% 3

Multimedia generation (podcasts, virtual images, “digital broadcasting” 3% 3

Modeling tool 2% 2

Software for specific platform (iPod/iPad/iPhone, interactive whiteboard) 2% 2

Other (Augmentative reading support, inquiry environment, encyclopedic
resource for vet training, blended learning solutions, etc)

5% 5

 aN=92; Multiple items could be chosen, b Coded open-ended responses to “other”

4.1.3 Current Employment: Formal title

Survey participants were asked to enter their formal title. As you can see in Table 13,

many hold management or executive management roles. This is likely in part because most

participants are highly experienced and therefore far along in their careers. A review of the roles

played by these individuals revealed that all of them continue to play technical roles, although

they may be more likely to be involved in requirements gathering and higher level design tasks

than day-to-day implementation. Faculty members who also do some software development are

overrepresented in this survey (see section 5.6, Limitations).

A review of those who are in executive management or who own companies revealed that

the majority of these work in very small companies. Of the two who indicated that they are

“owners”, one works in a single person business and the other in a business with less than five

employees. Both play roles across the board including architecture, requirements, developer-

level design, implementation, user experience design, and quality assurance. Of the 14 in

“executive management”, four work in a company with under 5 employees and four more work

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 98

in a company wtih under 20 employees. Six of them do not actually perform supervisory roles at

all, and all play additional roles including requirements gathering (11 of 14), development level

design (11 of 14), programming (6 of 14), user experience design (12 of 14) and instructional

design (8 of 14).

Table 13: Formal Job Titles

 Percent Counta

Software Design (including Software Engineer, Designer/Developer, and Web
Developer)

6% 5

Lead Software Designer (with titles such as “Lead Developer” or “Senior
Developer”)

6% 5

Project Management 2% 2

Management 11% 9

Executive Management (with roles such as “CIO” or “CEO”) 17% 14

Owner 2% 2

ID/eLearning related 10% 8

Faculty 27% 22

k-12 teacher 5% 4

Other 13% 11

aN=82 who provide a formal job title in an open-ended field

4.1.4 Roles played.

All but 11 participants played more than one role, and 66% (61 of 92 respondents) played

more than 3 roles in their current position (see Figure 5). As you can see in Table 14,

participants play a wide range of roles, from gathering user requirements and designing the high-

level software architecture to low-level programming and database design. In addition, 47% do

at least some instructional design work and 44% play a supervisory role. In the section “Four

types of backgrounds”, I will describe the variation between the types of roles played for

participants with different educational backgrounds.

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 99

Figure 5Number of roles played by participants (N=86)

Table 14: Roles currently played

 Percent Counta

Software architecture 45% 41

Business requirements gathering/generation 46% 42

Technical requirements gathering/generation 47% 43

High-level design 52% 48

Low-level design 46% 42

Programming 47% 43

Database design 27% 25

Web developer/Web designer 45% 41

User Experience Design 53% 49

Quality Assurance 27% 25

Instructional Design 47% 43

Supervisory 44% 40

Other (please specify)*
Teacher/educator 9% 8

Project management 2% 2

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12

N
um

be
r o

f P
ar

tic
ip

an
ts

Number of Roles Played

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 100

Other (“Creative Direction, Audio Design, Section 508 Compliance,
Marketing, Sales”; “System support”; “teach, admin, student support, etc”)

3% 3

aN=92; Multiple items could be chosen.

4.2 Formal Educational Paths

Participants were asked to provide detailed information on degree programs they had

attended. Unfortunately, this set of questions was apparently unclear to some participants, as a

number indicated they had Doctoral or Masters degrees but listed no earlier degrees. Follow-up

interviews with several of these individuals revealed that they had, in fact, taken multiple prior

degrees. Therefore, the results reported in this section are not complete. I believe that

participants generally did receive the degrees they indicate (as they were not inconsistent with

other survey responses), but that they may also have received additional degrees.

The degrees held by participants varied quite a bit. Twelve percent (10 of 82) indicated

they held at least one degree in both a computing-related and an education-related field. Fifty-

four percent (44 of 82) had pursued at least one computing-related major (in areas such as

Computer Science, Software Engineering, Information Systems, Human Computer Interaction,

etc.). Of those remaining, 21% (8 of 38) had minored in, or had taken individual classes in, one

of these areas. Twenty-nine percent (24 of 82) held at least one major in the areas of

Instructional Design, Educational Technology, or another education-related field. Of those that

remained, 41% (24 of 58) had taken a minor or some individual courses in this area. Only 16%

(13 of 82) appear not to have taken any formal coursework in computing-, instructional design-,

or education-related areas (This number is based on responses to questions about specific types

of course taken as well as the formal degrees held. Therefore, this number should be

trustworthy). Participants had also earned degrees in physical sciences (e.g. Physics, Biology,

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 101

Chemistry, Astronomy, etc.), social sciences (Psychology, Sociology, Anthropology, etc), art

(e.g. Fine Arts, Graphic Art), Business, Philosophy, Law, and a variety of other areas.

Interviewees also had a range of educational backgrounds, from no degree to several with

doctoral degrees. Most held multiple degrees, with an eclectic mix of majors. Across the 9 Phase

1 participants, three had one or more degrees in Computer Science or another computing field,

three had one or more degrees in instructional design or educational technology, and three had at

least one education degree or teaching certificate. Other degrees held included Psychology, the

Classics (Latin and Greek), Physics, English, and Information Systems. Each interviewee who

did not have a formal degree in computing or instructional design indicated that his own

educational experience was extremely valuable in fostering critical thinking and other skills

needed on the job. For example, one explained “A science degree ...it is important to think

systematically, and avoid the subjective needs of the people making the demands on what

software you need.” (I1). Another similarly mentioned that his English degree helped him learn

to think critically and communicate clearly, enabling him to solve the types of problems he

encountered on the job.

4.2.1 Four Types of Backgrounds

As was mentioned in the previous section, software designers in this area have a wide

range of educational backgrounds. In order to explore the connection between their backgrounds

and other factors, participants were asked the following questions:

1. Did you take any courses related to software design or development as part of your

formal education?

2. Did you take any courses related to education or instructional design as part of your

formal education?

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 102

Based on these questions, participants were categorized into four groups, as follows:

1. Those with some computing-related formal education, but no coursework in ID or

education: These students had had some formal education in Computer Science, Software

Engineering, or a related field. For the purposes of this report, any participant who

answered “yes” to question 1 and “no” to question 2 was assigned to the group

“computing only”.

2. Those with some formal education in instructional design, educational technology, or

other education-related field (since the numbers were relatively low, those with degrees

in any education related field were combined with those with an instructional design or

related degree), but no coursework in Computing: Any participant who answered “no” to

question 1 and “yes” to question 2 was assigned to the group “ID or education only”.

3. Those who had done at least some course-work in each of these areas : Anybody who

answered "yes" to both questions 1 and 2 was assigned to the group "Both".

4. Those who had done coursework in neither of these areas: These participants were

assigned to the group "Neither". Please note that all but one participant had at least one

post-secondary degree and many had multiple degrees, so participants in the “Neither”

group did have formal education in one or more other areas, as reported in the section

“Formal Educational Paths.”

In this section, I will discuss how these backgrounds relate to participants’ experiences

and beliefs relating to the roles they play in educational software design. In later sections, I will

explore the degree to which each type of background appears to have prepared participants for

the roles they play.

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 103

4.2.2 Experience in Software Design and Instructional Design

Perhaps unsurprisingly, those with an educational background in a computing-related

area have more experience in software design than do those without this background. As you can

see in Table 15, 68% of those with an educational background in computing but no coursework

in education, and a similar number of those with formal education in both areas, have more than

10 years of experience in computing, while only 30.8% of those with ID or education related

coursework alone have this level of experience. Since all participants are currently software

designers, all have at least some experience in this area.

Conversely, those with no coursework in education and instructional design have little or

no experience in instructional design, as can be seen in

Table 16. Fifty-six percent of those with computing education only, and 25% of those

with no background in either area, have no experience in instructional design at all. Still, it is

noteworthy that many that have no formal education in instructional design (16% of those with

computing backgrounds and a third with no degree in either field) are experienced instructional

designers (with more than ten years of experience).

Perhaps most interestingly, those who have done at least some formal coursework in both

areas are most likely to be highly experienced (with more than 20 years of experience), possibly

indicating that people who remain in this industry have pursued formal coursework in both areas

over time. Those with no formal background in either area tend to be the most eclectic, with no

clear pattern to their experience levels.

Table 15: Experience levels in Software Designers as measured by years of experience (n=74) in computing,

ID/education, both, and neither

 Computing
only (N=25)

ID or
Education
Only (N=13)

Both
(N=24)

Neither
(N=12)

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 104

Less than 1 year 4.0% 15.4% 0.0% 16.7%

1-4 years 12.0% 30.8% 4.2% 0.0%

5-10 years 16.0% 23.1% 29.2% 16.7%

11-15 years 24.0% 15.4% 8.3% 33.3%

16-20 years 8.0% 7.7% 16.7% 16.7%

21+ years 36.0% 7.7% 41.7% 16.7%

Table 16: Experience levels in Instructional Design as measured by years of experience (n=74) in computing,

ID/education, both, and neither

 Computing
only (N=25)

ID or
Education
Only (N=13)

Both
(N=24)

Neither
(N=12)

None 56.0% 0.0% 0.0% 25.0%

Less than 1 year 8.0% 7.7% 12.5% 0.0%

1-4 years 16.0% 23.1% 12.5% 16.7%

5-10 years 4.0% 23.1% 20.8% 25.0%

11-15 years 8.0% 23.1% 16.7% 0.0%

16-20 years 0.0% 15.4% 12.5% 8.3%

21+ years 8.0% 7.7% 25.0% 25.0%

As Table 17 shows, participants with different backgrounds may be more or less likely to

fill certain types of roles. Those with formal coursework in computing related areas are more

likely to be directly involved in the implementation of software, as well as the more technical

ends of designing the software. Both survey and interview participants indicated that they had

played additional roles over the course of their careers. However, participants who either had

education in computing fields or were self-trained seemed more confident in their ability to pick

up new programming languages and technologies than those with a background in ID or

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 105

education only. During member checking, a participant with a background in computing

remarked on this finding:

The word 'seemed' is a rather weak word. I would say that most people who have

computing degrees or self-trained were sure that they could pick up a new

programming language. Nearly all programming languages are the same it is just

syntax and APIs that make them different. (S56, member checking)

Table 17: Current Employment: Roles Played

 Computing
only (N=27)

ID/Education
only (N=13)

Both
(N=24)

Neither
(N=12)

Product-Level Design

Software architecture 74.1% 18.8% 34.6% 46.2%

Business requirements
gathering/generation

66.7% 50.0% 34.6% 30.8%

Technical requirements
gathering/generation

74.1% 43.8% 38.5% 23.1%

Design of Data Models, Algorithms, etc.

High-level design 70.4% 50.0% 53.8% 38.5%

Low-level design 63.0% 50.0% 42.3% 23.1%

Implementation

Programming 70.4% 31.3% 38.5% 38.5%

Database design 44.4% 12.5% 26.9% 23.1%

Web developer/Web designer 51.9% 43.8% 53.8% 30.8%

Roles related to other areas of the overall product design

User Experience Design 59.3% 56.3% 53.8% 53.8%

Quality Assurance 22.2% 18.8% 38.5% 30.8%

Instructional Design 18.5% 87.5% 73.1% 30.8%

Supervisory 29.6% 56.3% 46.2% 69.2%

Note. Multiple items could be chosen. Participants were directed to choose all that applied.

Pairwise Pearson Chi-square tests were conducted to determine whether educational

background had a significant impact on roles played on-the-job. That is, separate tests were run

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 106

for each possible pair of course types (Computing (Computing-related courses only) versus

ID/Ed (Instructional Design or Education related courses only); Computing versus Both (at least

one of each type of course); Computing versus Neither; ID/Ed versus Both; ID/Ed versus

Neither; and Both versus Neither). The statistically significant results are displayed in Table 18.

Those with a formal background in Computing are much more likely to play technical

roles, including Software Architecture and Technical Requirements generation as well as

development roles including Programming and Database design. Unsurprisingly, those with a

background in Instructional design are more likely to play an instructional design role than

others. More interestingly, those who have no formal education in either area are the only group

statistically significantly more likely than another group to have supervisory roles, although they

are less likely to participate in technical requirements gathering, high-level design, and low-level

design. It is interesting to note visually that in many areas areas “both” is identical to

“ID/Education”, and there are no significant differences between these two groups.

Table 18: Differences in likelihood of playing various roles, based on educational background

Roles and Groups compared Chi-square Effect size (Phi)

Software Architecture

Computing more likely than ID/Ed 12.711*** Large (-0.578)

Computing more likely than both 9.010** Medium (-0.429)

Business Requirements

Computing more likely than both 4.608* Medium (-0.307)

Technical Requirements

Computing more likely than ID/Ed 4.027* Medium (-0.326)

Computing more likely than both 5.891* Medium (-0.347)

Computing more likely than neither 7.298** Medium (-0.444)

High-level design

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 107

Computing more likely than neither 3.970* Medium (-0.328)

Low-level design

Computing more likely than neither 4.937* Medium (-0.365)

Programing

Computing more likely than ID/Ed 5.964* Medium (-0.396)

Computing more likely than both 4.601* Medium (-0.306)

Database design

Computing more likely than ID/Ed 5.218* Medium (-0.371)

Instructional Design

ID/ed more likely than Computing 18.087*** High (0.690)

Both more likely than Computing 12.790*** High (0.511)

ID/ed more likely than neither 9.420** High (-9.614)

Both more likely than neither 4.629* Medium (-0.359)

Supervisory

Neither more likely than Computing 5.029* Medium (0.369)

Note: Only comparisons that were statistically significant were shown.
ID/ed: At least one instructional design or education-related course taken as part of a formal degree program (no
Computing courses). Computing : At least one computing-related course taken as part of a formal degree program
(no ID/ed courses). Both: At least one of each type of course taken. Neither:No ID/ed or Computing courses taken in
any degree program attended.
*p<0.05, ** p<0.01, ***p<0.001

An interesting area to highlight was the remarkable similarity in focus on user experience

design (59.3% of those with a computing background, 56.3% of those with an instructional

design or education background, and 53.8% of those with formal education in either both or

neither of these areas indicated this is a role they currently play), an area interviewees stressed as

very important, yet often difficult to “sell” to co-workers and clients, especially internal clients.

As one explained:

In the larger higher-ed [sic] community, there is [a] huge push towards usability.

It’s really a sea-change, where a lot of the software that we are working on had

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 108

traditionally been developed and driven really from an engineering mind-set.

Now there was a new emphasis on designing the software from the standpoint of

the user, for taking the user need and making that the point of entry for a project,

and working on clearly articulating that user need and designing around it. (I3)

He indicated that when he began his current role he considered himself an “evangelist” for user

experience design, but he and his group had grown since then as the university organization for

which he works began to understand the value of this area.

4.3 Skills and Knowledge needed on the Job

Interview participants identified a range of important skills, knowledge, and attitudes

necessary to succeed in Software Design positions. The most commonly mentioned areas are

summarized in the sub-sections below. Although the technical skills are discussed first, it is

interesting to note that the largest numbers of comments had to do with communication skills, a

focus on the needs of the user, and topics discussed in the “design judgment” section

(particularly as relates to structuring software appropriately so that it can easily be maintained

and adapted over time).

4.3.1 Playing different roles

As described earlier, participants play many roles, and being “well-rounded” is

considered an important trait. One interviewee indicated that he particularly enjoyed wearing

many hats, but “it [is] harder these days to be a jack of all trades…one really has to focus,

because there’s so much learn, so much to know”(I3). This is why many teams have a balance of

skills, often including user experience designers, graphic artists, and other types of media

specialists in addition to content experts and developers. As they progress in their careers,

participants have entered management roles. This can be a mixed blessing. “I love to do the

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 109

design so it’s always a bit of a disappointment when I realize I won’t have time” (s43 interview).

However, playing the role of a mentor can be rewarding to more experienced professionals.

4.3.2 Technical Skills and Knowledge

Along with the ability to program, software designers involved with development must

keep up with new platforms and be able to ensure that new technologies will work with other

business systems. They must know how to structure their code appropriately, so that it is both

efficient and modular enough to be maintained over time (this is discussed further in the section

on “design judgement”). Participants explained that different skills are needed for different types

of programming (for example, “front-end programming” using Javascript, versus back-end

programming or database design; scripted languages have their own advantages (such as the

ability to easily view and learn from other’s work)). Code reviews are an important part of the

job, and are “part of a quality production environment.” (s43 interview)

Those without a technical background may have new things to learn, even if they are not

directly involved in software development. For example, as one participant explained,

employees with a degree in an area related to education (other than instructional design) can

have difficulty understanding the need to make software scalable.

I mean, I would also say that a degree in education doesn’t hurt, but it is not

adequate in and of itself. And the main reason for that is that it is, it’s so

important that you can scale what you do. And I am constantly working with

people who don’t understand scalability issues. And I’m always having to teach

them – re-teach them – how to approach instructional problems. Because… it has

to work for 60,000 people in 50 states, who might be by themselves at home. (I9)

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 110

4.3.3 User experience design, visual design and usability related Skills and knowledge

One participant explained that he has worked hard to “evangelize” on the importance of

user experience design. In his current position on a team at a university, he now leads a team of

user experience designers where previously no-one had paid explicit attention to this aspect of

the work. As a user experience designer, he feels it is important to understand “the visual design

aspect.”

I run into way too many user experience designers who actually do not understand

visual design. It’s not so much that you have to be able to do it, but that you have

to understand visual media… that’s part of your communication, that’s part of the

pallet that you use as a user experience designer. (I 3)

One interviewee explained that the idea of focusing on a user friendly design is not a new

idea.

User friendly software… was a common expression back in the 80s, I guess, and I

don’t know how long it lasted, but it was to really just concentrated on making the

interface as personable as possible, easy for anybody off the street, not just a

computer geek, could understand how the program was structured and how to

find your way around, and find what you wanted, what you needed, and get some

kind of useful feedback form the program. (I5)

He believes that this is still an important goal although some of the terminology has changed, but

he is concerned that often decisions are being made for the purpose of novelty rather than for

sound design reasons.

We keep playing around with margin menus and task-bars and organizing search

fields and where to put everything, and that’s a constant process, I guess, but it’s

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 111

interesting to see how designers will land on one theory for a while, and then

decide to change it 5 years later, sometimes just to be new and different and show

that they’re being new and different just to change it, whether it’s good or not,

just to shake things up for their users and not let things get stale. That seems to be

perhaps more of a priority than analytically sound, simple, easy-to-read design

that sometimes they just want to pick things up and make it look new and

different just for the sake of that alone. (I5)

Other specific concerns come into play for certain types of users and contexts. In some

cases, it is very important for the software tool to remain in the background, so that the focus is

on the content. For example, in the case of lecture capture software, it is important to understand

“that teaching, especially a lecture, is a performance. It’s a stage performance. And that means

that the tool has to kind of be in the background. It has to be easy to use, and that’s pretty much

it.” (I2). Another lesson is the importance of keeping the user’s attention, as it is “commonly

accepted, I guess, that … the general public attention span seems to shorten on average all the

time, and we need more activity, more motion, more…. Introduction of things new and different

to keep us interested and attentive.” (I5) Others discuss the importance of understanding specific

visual media, and the of “being aware of the relationship between media and text, and how they

reinforce each other” (I9).

4.3.4 Management and Project Management related skills

As discussed earlier, quite a few survey participants play supervisory roles. Even for

those without a formal title of manager or project manager, managing staff, timelines, and other

aspects of a complex project may be an aspect of working in this field, especially for more

experienced professionals. Teams often include members from a variety of backgrounds and

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 112

roles. “Typically three to five teachers, at least two content reviewers, sometimes three, and then

on the tech team, um, videographers and the flash programmers, typically we would have two to

three flash programmers, three to five videographers, an artist, that’s pretty much the team” (I6).

If contractors are hired, budgets and timelines need to be negotiated.

One interviewee explained that skill that make a good project manager are similar to

those that are needed to be a good instructional designer. “you have to be a good planner,

problem solver, communicator, researcher, writer. What you have to add to it is the ability to

lead and manage other people effectively” (S 43 interview). She went on to explain that some

people, especially those with a computer science background in her experience, have problems

with another important aspect of project management: managing deadlines and realistically

budgeting time.

Where many CS people fall down is in wanting to over-engineer everything. They

want to build a state-of-the-art LCMS when a simple Moodle-based solution will

be just fine – and where the budget offers no other choice. This is where

instructional design and common sense help in reigning in the grand schemes of

some folks. I also find that CS types greatly underestimate their time requirements

– so it’s a strange mix of over-specifying the solution and underestimating their

time. (S 43 interview)

Those with a background in education may have other types of lessons to learn. “You tend to try

to perpetuate things that make you successful in a classroom, and those aren’t the types of

behaviors that are important to doing in admin or in coordinating different projects” (I 6).

In his experience as a one-person company, another participant warned of an issue that is

especially common for new enthusiastic designers.

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 113

I have discovered over the years that if you attempt to produce the perfect

program then you will never finish. Version 1.0 of an App needs to do something

useful but does not need to do everything it could do. (survey 56 interview)

He went on to explain that once something is selling, he is likely to get feedback on what users

actually want, which can then be added to a later version of the project. However, it is

important to note that different business models may apply to different types of software. For

example, one interviewee explained that web-based software is often sold on an advertising or

subscription-based model, in contrast to the business model he is used to “which is more like

selling books or any other educational materials” (I5).

4.3.5 Communication and Team Skills

Communication skills mentioned include verbal, written, and presentation skills. “I

think …the one skill that has transferred throughout my positions [is] learning to talk

with people” (I 8). The importance of effectively communicating a design, breaking up

information in order to communicate it clearly, and an understanding of the relationship

between media and text were all mentioned as important related skills.

Interpersonal skills are important because collaboration is such a key part of work in

this area. They include the ability to have a back-and-forth discussion about a design or

work plan, the ability to truly listen to others, and the ability to understand how others on

the project think.

And that ability to collaborate with other developers is SO important. I mean, for

me, I will take a collaborative programmer that is not as good as a lone wolf,

because I KNOW that in the end he will make fewer mistakes, because he

collaborates. And, it reduces my risk, because if something goes wrong, two

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 114

people know how to fix it, not one. And so you know, that is a really important

aspect that doesn’t seem to really be being emphasized, to be able to TRULY

work in a team and write code with a team. (I 9)

Someone in this role needs to be able to adapt to working on a large team, working with

remotely located team-members, and working on multi-disciplinary teams which may include

people with expertise in a wide variety of media and content areas as well as software designers

and instructional designers. It is important to realize that instructional designers have some areas

of expertise while technical team members have other areas of expertise, and to understand how

other team members work. However, sometimes personality issues play a bigger role in

communication than the specific area of expertise.

In terms of… for example, how easy is it to extract the information that you need,

how easy it is to work with the person, how quickly can you accomplish your

objective, that really depends a lot more on the person, and how easy that person

is to work with. (I4)

4.3.6 Design Judgment

A fair number of participants discussed the ways that their own judgment developed over

time. As one interviewee explained, “everything goes into the design and development process.

There is no one approach and you build up judgment in design and development from every

project that you are a part of” (I8). Judgment calls are important in technical roles. For example,

participants mentioned the importance of having “good programing sense” and “good usability

sense”. They also play a role in efficiently learning new things needed on the job.

Well, I guess you can call it professional judgment. After doing millions of data

searches and millions and millions of searches of info [sic], you kind of learn to

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 115

judge the quality of the info you get, and usually if it makes sense to me, it

usually has some kind of merit to it. If it doesn’t make sense to me, it is usually

questionable material. I think I am at the point where, if the material is good, it

will make some kind of sense to me. I should at least be able to connect what is

the logic involved here/ the meaning to this. (I 8)

Participants mentioned other lessons that they have found are important in guiding their

decision making in complex design situations, including knowing that there is more than one

way to do something, understanding the importance of a good design to start with on following

steps and final solution, and knowing when to use existing code and when to write new code.

All of these concepts play a role in the crucial decisions relating to how to structure a program so

that it will be both efficient and maintainable.

Experienced designers can tell a good design when they see one. “A lot of what I know is

obviously from experience. I can look at a design and point out classes that are just a complete

waste of time and should be made part of another class” (s56 interview). Another participant

indicted that it is important to structure code in a way that will be maintainable over time:

The way I approach software development, is to try to imagine where I want to be

in five versions, and then start scaling it back , but I do that so I can make sure

we don’t , like I said, code ourselves into a corner. (I 2)

Although he is involved in the design and not development of the system and has not personally

done much programming he indicated that he can tell a good programmers from a poor or novice

programmers because experienced programmers know how to structure their code in a way that

takes into account future needs:

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 116

Because some day, your… code is going to be called upon by some new feature

or some new back-end system. And it takes a little longer and you have to be a

little more careful to write it that way. And you know, junior programmers don’t

get that and don’t write it that way. And they are constantly rewriting our stuff.

Where experienced programmers don’t. (I2)

He went on to explain that this type of insight is more important in a developer than grounding in

the domain area the software is being developed for, as an experienced programmer will be able

to point out things that a content expert may not have thought of.

4.3.7 Understand contexts and users

It is important to understand who a client is and what the client wants.

One of the most important thing about designing applications or content is

knowing who your client and what their expectations are, so you can tailor

everything you do for their needs and to use that to help create something that

really works for them. (I 8)

However, the “client” for educational software is often not the end-user. Participants warned

that it is very important to gain an understanding of the actual end-user, as a client or the

“middle-men” may not know what the real end-user actually wants and needs. However, clients

or users may not really know what they need.

Coming to a really good and deep understanding of what your client wants and

needs is a very important skills for software developers, and especially

consultants like myself. And it’s not always an easy process, because in many

cases, the person that you are doing this work for only has a vague idea of what

they really want to happen…all they know is that they are not happy and

something is going wrong. And it falls to me and people like me to me and

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 117

people like me to figure out what it is that they really want, and what they don’t

want, ok? Because it has an impact on the nature of the work that I do. (I7)

For example:

So if they want a program to, um…oh, I don’t know, help to grade papers, for

example. Papers are submitted through email, and they want help grading it,

and… they say “I want to grade these papers”. They give me a list of criteria or

rubrics to use. Then I’ll start asking questions. Like, “what kind of grades do you

assign? Do you use point grades or letter grades?” They’ll tell me, “oh, its only

points, I don’t care about letter grades at all. So, that’s a requirement that gets

translated into this job that I’m building. And being able to… talk with clients and

understand their true needs is a very important skill. (I7)

Unfortunately, this is not always easy to do.

There’s two obstacles … We’ve got too many people between us and the students,

and I think the students don’t know what they want either. This year it is like

google, and the previous time something else. And by the time the system is out

there it would probably be not what they want. So it’s basically really tricky. (I1)

As another explained, in the area of higher education the people between himself and his actual

users (students in higher education), may also have little insight into what works for those users.

I think it’s important that when people design systems, it’s as near to what the

end-user wants, rather than the people that are designing the system. There [are] a

lot of people in the middle, from the faculties of whatever, who tend to be 20 [or

more years] older than the target audience. (I1)

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 118

Finally, the software itself and the related training must be provided in a form that is appropriate

for his users and their context. As another participant explained, it is important to “make sure

that we provide resources that they can best utilize, and provide training to use those resources

effectively.” (I 6) This participant, who provides resources for k-12 schools across a specific

region, regularly surveys and holds meetings with the administrators and library media teachers

who are his clients, as well as getting feedback from colleagues from other regions.

4.3.8 Need for Self-learning

Self-learning is considered a very important aspect of the job in this field. “I think

software developers are one of the most susceptible professions to obsolescence unless you

really take control of your own learning.” (I 9) As will be discussed further in the later section

on self-learning, the way individuals go about learning may be very individualized, but typically

is in response to a direct on-the-job need.

So, In terms of my self-taught education, I would learn things as needed. So, if a

project required a new language, I just decided that that’s what I was going to

learn. I didn’t really set out on a particular trajectory and say, “Oh, ok, well, now

I will really have to learn language X because language X was cool.” It was

always from a standpoint of, I need this for a project, so I’m going to learn it. (I 3)

However, the willingness to acquire skills one is not comfortable with is also very important.

I don’t have a huge belief in talent. I believe much more in skill and that skill is

something you can acquire. What may be innate is the willingness to acquire

those different skills, and I am not sure I know where that comes from. But

that… for example, I myself know I am not a really strong visual designer, but I

actually manage to do reasonably good visual design just from having studied it,

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 119

from taking the time to take some color theory classes and take some typography

classes, because I know that was my weakness. (I 3)

4.3.9 Other things to be prepared for

Individuals mentioned a number of other “life lessons”, a few of which are mentioned

here. As described earlier, one interviewee made sure that he always “starts small” on new

software (specifically “apps” for iPhones, iPods, and iPads), as not every design will sell. Once it

has sold and users start providing feedback, additional features can always be added. Another

pointed out that unexpected changes to the design or the plan can occur in any project, “because

once you start putting it together, you come up with other things you haven’t through of. Almost

invariably.” (I 2) Finally, participants have experienced a variety of projects of different types,

requiring different skill-sets, over time. One participant had worked in an especially wide range

of positions:

I’ve worked with educational publishers to do curriculum projects for middle,

high school, and higher ed. Subject areas have included foreign language,

developmental math, college biology, middle school history and social studies,

economics, English grammar and more than I can list here. I’ve probably done

several dozen educational products. I’ve also worked with companies to develop

training materials for customers (before and after sale), and for employees. And,

CEUs, which is training for professionals who need on-going training to maintain

a license or accreditation. …I’ve done a lot of software and microprocessor kinds

of training. Also, utility companies, oil industry, non-profits, state agencies, call

centers – again, the gamut. I think if you have a long career in instructional

design, this is pretty typical.” (S43 interview)

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 120

4.3.10 Skills and Knowledge Especially Important for working on Educational Software

Design

When survey participants were asked what is unique about working in educational

software design (as opposed to designing other types of software), participants across the four

groups responded rather differently, as Table 19 demonstrates.

Table 19: Skills and Knowledge unique to developing educational software

 All Groups
(N=89)

Computing
only (N=27)

ID/
Education
only
(N=16)

Both
(N=26)

Neither
(N=13)

Not unique – this job requires the same skills
that I would need to gather requirements
and develop software for any specialized
group of users

23% 44% 6% 7% 31%

Not Unique – I know this content well
because I have been working with it for an
extended period of time, but I would have
learned about any domain after having
worked in it for the same amount of time

17% 30% 6% 4% 31%

Educational theory 52% 22% 69% 85% 39%

Instructional theory 49% 15% 69% 81% 31%

Instructional design experience 42% 11% 75% 54% 39%

The ability to educate clients and co-workers
on topics that are not well known or
understood in this field

36% 19% 50% 35% 46%

Other 24% 22% 25% 27% 15%

Note. Multiple items could be chosen. Participants were directed to choose all that applied.

Those with formal experience in Instructional Design or education (including those with

experience in both areas) were more likely to feel that educational and instructional design

theory were important to their role, and more likely to have benefitted from instructional design

experience (although, as mentioned earlier, they were also more likely to have had instructional

design experience). As one survey participant explained in a follow-up interview, “I feel that

when the project is an instructional project, the manager needs to have an instructional

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 121

understanding of what success will look like – not cool graphics or zippy performance, but

instructional effectiveness.” (S43, interview). An interviewee alluded to the difficulty of

understanding how to make software engaging to students as well as targeting a student’s

specific learning needs “without providing more info about other things that a student doesn’t

necessarily need to know about or already knows.” (I6)

Those with formal education in computing only were much less likely to feel that the

domain-specific content is unique – rather, they feel that gathering user requirements is a part of

any job in software design. The options presented for these closed-ended questions were based

on the data collected during the interviews.

As one interview participant explained, an individuals’ ability to communicate with users

and subject matter experts is more important than a background in a specific domain:

In terms of…how easy is it to extract the information that you need, how easy it

is to work with the person, how quickly can you accomplish your objective, that

really depends a lot more on the person, and how easy that person is to work with,

and do they have experience with this type of thing, in terms of a software

development project, that has much more weight than if it was in particular

instructional design versus something in firefighting or whatever [sic]. (I4)

Others explained that they had developed experience over time, but this is something they

would have done in any industry they would have worked in. One suggested that domain-

specific knowledge is more important for some types of software than others.

The specific [content] areas I don’t need to know very much at all. …[The

software we develop] is designed to… record a lecture as it’s being given. And

so…the level of expertise I that needed to really have is, what are they trying to

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 122

do, what is important to capture, and what is important for students to have access

to. Understanding that teaching, especially a lecture, is a performance. It’s a stage

performance. And that means that the tool has to kind of be in the background. It

has to be easy to use. And…that’s pretty much it. (I2)

He went on to explain that among programmers “the easiest to work with are the

programmers that have the most experience with great user interfaces, understanding how people

actually use software. Not specific to the education realm, in my case.” (I2) Another explained

that the personality of a subject matter expert one is working with makes a much bigger

difference to his ability to determine requirements and build a good system than the specific

domain one is working in.

The personality component has way more to do with it than the subject. For

example, how easy is it to extract the information that you need, how easy it is to

work with the person, how quickly can you accomplish your objective, that really

depends a lot more on the person, and how easy that person is to work with, and

do they have experience with this type of thing, in terms of a software

development project, that has much more weight than if it was in, you know, in

particular instructional design vs something in firefighting or whatever. (I4)

About a quarter of survey participants described additional skills and knowledge that

were unique requirements for a job in educational software design. These comments were

remarkably similar across all four groups, and included teaching experience, understanding

specific aspects of users and contexts unique to this area (such as student characteristics,

classroom realities, time constraints when collaborating, knowledge of cognitive science and

child development, and understanding measurement and assessment) and content-specific

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 123

knowledge (e.g. math education). Contact with subject matter experts in the field of education

was offered as a valuable resource. Other survey participants described personal characteristics

they felt were necessary to work in this field, such as “Passion for helping kids” and “[being an]

expert learner with ability to see patterns in new knowledge domains, knowledge and skill

elicitation from subject-matter experts.” Another indicated this area is “unique because everyone

in the process is a potential user.”

Similar sentiments were offered by interviewees. One indicated an important factor in his

role was the ability to “[understand] the needs of classroom teachers, and what resources they

use in their classroom environment. Make sure that we provide resources that they can best

utilize, and provide training to use those resources effectively.” (I6)

 Another interviewee mentioned several additional reasons that domain-specific

knowledge is important. Because he is involved in designing an authoring system used by his

team of instructional designers,

…the authoring system has to afford best practices in language acquisition so I

can’t sort of bring someone in to sit in a room and say “yeah, that is a good idea”

or “no, that’s not a good idea” because there’s so many other factors that have to

be considered that are highly technical, you know, regarding reusability issues,

and scalability…and so, if I don’t have that in my head, I’m not going to make

the right decisions, or at least not optimal decisions, about its structure. So that is

one major reason I need to know it. (I9)

In addition, he felt that it is important to have, “face validity”: letting clients and employees

know that you understand the domain.

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 124

When people meet me and they find out what my job is, and then figure out that I

don’t speak 5 languages, then I need to be able to portray to them enough expert

knowledge that they will lend me some credibility in my position. (I9)

Interviewees also pointed out the need to educate clients on topics that might not come up in

other domains. For example, one described the need to help k-12 schools understand that they

had a “brand” and a character to portray on their web-sites in a previous position. They did not

have much familiarity with this medium, “and yet they understood that they really needed a

website. So, a big portion of my work was really educating them in how they wanted to use this

medium” (I3). In his current position in a higher educational setting, he has found that he has

had to serve as an evangelist for the importance of user experience design. Understanding

common practices in the domain is also important for determining a business model. For

example,

One of the key decisions we had to make… how do we license [our software] and

how do we price it. And one of the things I was very adamant about was that you

had to price it such that an individual instructor could buy it. Because I was aware

that, at least in the higher ed level, when a faculty makes a software request, it can

be all kinds of rings of hell to jump through to get somebody to purchase it, and

often if it’s priced right, they’ll just buy it themselves, without having to go

through the bureaucracy. (I2)

 Other important areas mentioned by interviewees included the importance of maintaining

proficiency in developing for multiple platforms, which is sometimes more important in

education than in other domains, synchronization of software packages with related textbooks,

and the value of working closely with professional organizations in the specific domain.

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 125

4.4 Formal Educational Preparation for the Job

4.4.1 Computing Related Courses.

When asked to describe the most important things they learned from computing-related

courses, interviewees indicated that “software design fundamentals” (such as Object-oriented

design) were important. Beyond these, learning to think in a systematic way and learning to think

“outside of the box” were more important than other specific concepts. Learning how to interact

with clients (e.g. from a systems analysis course) and how to work in small groups was

especially valuable –for those who had these experiences.

Figure 6 lists types of courses that are typically identified as important components of

computing-related majors. The charts to the right indicate survey participants’ views on the

degree to which each of these has been important across their professional careers. As you can

see, participants generally agree that basic theoretical courses and foundational concepts such as

Object Oriented Design are quite important, while other areas have been less important in their

careers.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Basic Theoretical Courses

Object Oriented Design

Courses on Specific Programming Languages

Interface Design

Networking-related Courses

Operating Systems

Courses dealing with Hardware, Firmware, Assembly
Language

Unimportant Moderately Important Very Important

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 126

Figure 6 Importance of computing-related courses and concepts on the job (N=53 who responded to this question
set)

Figure 7 lists a number of areas that are identified in literature and in the Phase 1

interviews as being important to software design practitioners in the field. Each bar shows the

degree to which participants felt this topic was covered during their formal education. Few

participants felt that these important areas were covered “a great deal” in their university courses.

Figure 7 Degree to which topics were covered in computing courses (N=53 who responded to this question set)

For the most part, there were no statistically significant differences between participants

who had taken Instructional Design or education related courses in addition to computing related

classes and those in the other three groups on these items. However, those with at least one

course in each area were more likely to indicate that they were prepared to “work directly with

users” (U = 451.0, p<0.05, see Figure 8) and “testing practices” (U = 454.5, p<0.05, see Figure

9), based on an Independent Samples Mann-Whitney U test). It is somewhat surprising that

“testing practices” were better covered in Instructional Design courses; although the researcher

intended this question to cover software quality assurance related testing, it could be that

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Working Directly with Users

Working with Specific SDE/ IDEs

Working with Change Control Software

Maintaining Code over Time

Testing Practices

Not at All Well Somewhat A Great Deal

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 127

participants interpreted this question more broadly to consider types evaluation techniques

learned in Instructional Design coursework.

Figure 8 Degree to which coursework prepared you for “Working with Users”.

Figure 9 Degree to which coursework prepared you for “Testing Practices”.

4.4.2 Instructional Design and Education Related Courses.

One interview participant who had a degree in Instructional Design indicated that “The

craft and science of Instructional Design was not something I was going to just pick up on my

own” (I9). Others expressed varying levels of satisfaction with the degree to which their

coursework prepared them for working on educational software. Useful aspects of particular

programs included critical analysis of educational software, and valid and reliable assessment

techniques.

Interviewees who had taken education courses (outside of the area of instructional

design) indicated that these courses gave them a good foundation in learning theories (which

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

At least one course in Software Design (N=27)

At least one course in each of these areas (N=26)

Not at All Well Somewhat A Great Deal

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

At least one course in Software Design (N=27)

At least one course in each of these areas (N=26)

Not at All Well Somewhat A Great Deal

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 128

helps to create active and engaging resources for students). Software products developed by

these participants grew out of knowing what they wanted for their own students. One participant

indicated that his knowledge transferred to his current position in other ways: “Everything I

learned in education applies to software design. There is a focus on the learner, a focus on the

outcome, a focus on the process, a focus on individuality and customization – all important to

both designers and educators.” (I8)

Survey participants were asked how important their theoretical and practical coursework

had been to their professional careers. As you can see from Figure 10, participants generally

valued the education they received. However, Figure 11 shows that there are still some areas

that participants felt they could have been better prepared for, especially developing and testing

instructional software.

Figure 10 Importance of Instructional Design and Education Related courses on the job (N=42 who responded to
this question set)

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Other Education-related Courses

Educational Theory Courses

Instructional Design: Practical Courses

Instructional Design: Theoretical Courses

Unimportant Moderately Important Very Important

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 129

Figure 11 Degree to which topics were covered in Instructional Design related courses (N=42 who responded to this
question set)

There was no statistically significant difference in responses to most of these items

between those with some additional formal educational backgrounds in computing and those

who did not have any formal background in computing. However, an Independent Sample

Mann-Whitney U test showed that those with a computing background did feel more prepared to

design (U=296.0, p<0.05) and develop (U=293.0, p<0.05) instructional software than those who

had not taken any formal computing courses, likely because they had experience in both the

software design and development aspects (from their computing coursework) and in the

instructional and educational aspects (from their ID/education related coursework). See Figure

12 and Figure 13.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Testing Instructional Software

Developing Instructional Software

Designing Instructional Software

Designing Instructional Materials (other than
software)

Not at All Well Somewhat A Great Deal

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 130

Figure 12 Degree to which formal education prepared you for "Designing Instructional Software".

Figure 13 Degree to which formal education prepared you for "Developing Instructional Software".

Interestingly, participants who had had at least some coursework in both areas were less

likely to indicate the importance of educational theory courses (U=130.0, p<0.05. NOTE: “N/A”

responses were not included in the Mann-Whitney U test). This could be because some of the

participants who indicated they had taken “at least one course” in both areas may not have as

strong a background in educational theory as those who had taken ID/Educational but none in

computing, and may have focused primarily on instructional design or related areas in their

formal education, and who were therefore more likely to appreciate the benefit of an

understanding of educational theory. Oddly, those with no background in software design were

also more likely to indicate that “educational theory courses” were not applicable or not

important in their current roles, while 100% of those with coursework in both areas indicated that

this was at least “moderately important” (see Figure 10).

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

At Least One ID/Education Related Course (N=16)

Courses in Both Areas (N=27)

Not at All Well Somewhat A Great Deal

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

At Least One ID/Education Related Course (N=16)

Courses in Both Areas (N=27)

Not at All Well Somewhat A Great Deal

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 131

Figure 14 Importance of "Educational Theory courses" across the span of your professional career.

4.4.3 Preparation for the Job: “Unrelated” Courses and Experiences

As was mentioned earlier, interviewees indicated that their non-computing and non-

education-related coursework was very valuable to them. For example, one participant without a

degree in either area explained the value of his English degree:

I know it sounds cliché, but writing is at the center of almost every job…there are

two things you learn in an English degree. One is that you hone your writing

skills. The second is that you learn analysis. And that ability to do a thorough and

clean and defensible analysis, and then to communicate it clearly, has benefitted

me in every single aspect of my work. I don’t regret one minute I spent on my

English degree, because those skills have helped me to communicate with my

supervisors, with my peers, with my subordinates, with customers…I could not

have taken, in my opinion, a more valuable skill into the workplace. (I9)

Another participant similarly explained the benefits he gained from a formal grounding in

the area of Psychology:

The main [aspect of my Psychology degree] that was useful is the research

methodologies [sic], going through the very deliberative process of coming up

with a hypothesis and testing it, and…. Part of that is understanding and

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

At least one ID/Educaiton Related Course (N=16)

Courses in Both Areas (N=26)

N/A Unimportant Moderately Important Very Important

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 132

appreciating research methods, but also understanding and appreciating a

methodological approach to a given problem. (I2)

Figure 15 shows survey participants’ responses to being asked how important various

types of “unrelated” courses and topics are to them on the job. The degree of variation may have

to do with the variety of roles played and types of organizations participants are employed by.

Unsurprisingly based on interview findings and the literature, “Communication” is the most

highly rated item in this set.

Figure 15 Importance of "unrelated" coursework on the job (N=78 who responded to this question set)

Figure 16 shows discrepancies between areas identified by interviewees and the literature

as being important on the job, and the degree to which they were covered in formal educational

programs.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Mathematics

Natural Sciences

Social Sciences

Communications/English (or primary language)

Foreign Language(s)

Business

Unimportant Moderately Important Very Important

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 133

Figure 16 Degree to which non-theoretical topics were covered in formal degree programs

A Kruskal-Wallis test was conducted to evaluate differences between the four formal

education groups. The test was significant for the degree to which participants were prepared for

“Business aspects of the industry I work in” (H(3) = 9.172, p < 0.05). Follow-up pairwise

comparison tests indicated that those with no background were less likely than other sources to

feel prepared for the business aspects of the industry. Although the test did not show a statistical

difference between those with a background in Computing only and those with a background in

both areas, a quick look at Figure 17 shows clear pattern. Similarly, there were significant

differences between the groups in the degree of preparedness for “legal aspects of the industry I

work in” (H(3) = 12.947, p< 0.01). Follow-up pairwise comparison tests indicated that those

with no background in either area were less likely to feel prepared for the business aspects of the

industry, while those with at least some coursework in ID/education were most likely to feel

prepared for the legal aspects. This is unsurprising, as those with a general Computing degree

might not have had any background specific to the educational software industry. Unfortunately,

participants were not asked about the degree of importance of either of these items to their

professional careers, although an earlier item did indicate that “Business” was found to be “very

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Experience with Full Life-cycle of a Project

Business aspects of the Industry

Legal aspects

Technical Jargon

Domain/Industry Specific Jargon

Not at All Well Somewhat A Great Deal
N=78

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 134

important” or “somewhat important” to about 2/3rds of participants, regardless of their formal

educational background.

Figure 17 Degree "Business Aspects of the Industry I Work in" was stressed as part of formal educational

experiences.

The Kruskal-Wallis test also showed significance for the degree to which participants

were prepared by formal education for “Technical jargon used on the job” (H(3) = 12.940, p<

0.01) and “Domain/industry specific jargon used on the job” (H(3) = 14.907, p< 0.01). Pairwise

comparisons indicated that those with a background in both areas were more likely to feel

prepared for domain/industry specific jargon than those with a background in neither area or

those with only a background in software design, while having a degree in both areas was

preferential to having a degree in neither in understanding technical jargon (there were no

statistically significant findings in either item to indicate whether ID/Education or Computing

courses might be more helpful in learning either of these types of jargon).

4.4.4 Gaps between Formal Education and Needs on the Job

4.4.4.1 Gaps identified by interviewees

Interviewees identified a number of gaps between skills and knowledge acquired as part

of their formal education, and what they needed on the job.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

At Least One Software Design-Related Course…

At Least One ID/Education Related Course (N=15)

Courses in Both Areas (N=25)

Courses in Neither Areas (N=12)

Not at All Well Somewhat A Great Deal

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 135

Practical skills were high on the list of areas that interviewees felt unprepared for. As

one explained, “more practically oriented courses might have… expedited my own development,

as a designer. Otherwise, it seems I did have to learn…just about all of the practical stuff on my

own, or by the seat of my pants, as we used to say.” (I5) Another indicated that these skills were

touched on at only a very high level (emphasis added):

They talked at a very high level about … software development methodologies.

They didn’t go into any real detail… That is actually a huge part of the job, and I

mean in a real, practical, low-level manner. They talk about it in general terms,

at a high level, but then, you can’t apply that to everyday life. It’s not useful.

(I4)

Participants also felt unprepared by their degrees for the “people skills” they needed on

the job.

The working with people part [is] critical. And complex…[my] formal education,

for example, never taught me how to work… with a production team in an

effective way, or to work with a staff in an effective way, or kind of nitty-gritty

aspects [sic]...(I6)

Business and financial skills were not generally covered by participants’ degree

programs. As one participant who had taken courses and degrees in a number of fields recounted

(emphasis added):

It never happened, it didn’t happen in my English degree, didn’t happen in my

journalism minor, didn’t happen in my masters , it didn’t happen in my PhD [in

Instructional Psychology & Technology]. And I can see why, from the point of

view of the academy, that they don’t consider it a core competency, but I also

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 136

feel like any program that plans to create a leader should prove them with a

sound understanding of business finance and accounting. Because, whether

their role is ‘chief learning officer’ or something else, they are going to be

encountering that every day – or maybe not every day, but at least regularly. (I9)

4.4.4.2 Gaps identified through analysis of survey data

The next series of charts shows a comparison between the importance participants give to

various topics, and the degree to which they believe they were prepared by their formal

educational experiences in each of these areas. These items were based largely on findings from

the interview, along with findings from an earlier related study on the non-formal learning

experiences of software designers. In each case, a 2-sided Related-Samples Wilcoxon Signed

Ranks test was performed to determine whether participants’ feelings about the importance of an

item and the degree of coverage in degree programs attended were aligned. Statistically

significant differences are noted with asterisks.

Participants placed high value on the ability to work well in teams, perform multiple

roles, and communicate with specialists in other areas. More than 40% also indicated that strong

skills in a particular role or specialty area were “very important”, with nearly all remaining

participants indicating this was at least “moderately important”. Yet, only a minority of

participants indicated that these areas were well-covered during their formal education. Other

than the ability to work well in teams, there was no significant difference in the degree to which

participants felt prepared based on the type of formal education they had received.

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 137

Figure 18 Survey participants' responses to roles and communication

* statistically significant, p<0.05, ** statistically significant, p<0.01, *** statistically significant, p<0.001

A Kruskal-Wallis test was conducted to evaluate differences between the four formal

education groups. The test was significant for the degree to which they were prepared by formal

education to work well in teams. Follow-up pair-wise comparisons indicated that those with a

background in either ID/Education or Computing were more likely to feel prepared than those

who did not have a background in either ID/Education or Computing4, which you can also see in

Figure 19. This is not surprising, as team-work is a typical component of coursework in both of

these fields.

4 When correcting for Type I error wtih Holm’s sequential Bonferroni approach, only the pairwise

comparison of “Neither” to “Computing courses only” and “Neither” to “Both” show statistically significant results.
However, without this correction, a comparison of “Neither” to “ID/Education related courses only” also indicates a
statistically significant difference. Figure 19 shows that the results for those with either of these degree types are
similar, with those who had neither degree indicating a much lower level of preparedness, supporting the non-
adjusted findings.

0% 20% 40% 60% 80% 100%
Ability to Work Well in Teams

Ability to Perform many
Different Roles ***

Strong skills in one
Role/Specialty Area **

Ability to Communicate with
Specialists in other Areas ***

Importance on the Job (upper)

Unimportant

Moderately Important

Very Important

Degree Stressed in School (lower)

Not at All Well

Somewhat

A Great Deal
N=76

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 138

Figure 19 Degree to which "Ability to work in teams" was stressed as part of your formal education.

Interview participants indicated that critical thinking and the ability to solve problems

creatively were the most important aspects of their job. Regardless of what degree path they

followed, courses that stressed critical thinking were seen as the most valuable. Teaching one’s

self was a natural part of the job. Therefore, it is not surprising that each of these areas was

considered “very important” by survey participants. However, the degree to which these

important skills were stressed in degree programs varied quite a bit across all participants as a

whole, as can be seen in Figure 20. There was no statistically significant difference in

participants across types of courses taken based on a Kruskal-Wallis test comparing the four

groups (Computing courses only, ID/Education courses only, both types of courses taken, or

neither of these types of courses taken).

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

At Least One Software Design-Related Course
(N=26)

At Least One ID/Education Related Course (N=13)

Courses in Both Areas (N= 25)

Courses in Neither Areas (N=12)

Not at All Well Somewhat A Great Deal

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 139

Figure 20 Survey participants' responses to important types of thinking and attitudes about learning

* statistically significant, p<0.05, ** statistically significant, p<0.01, *** statistically significant, p<0.001

As shown in Figure 21, knowledge of specific programing languages and technologies

was seen as less important than other aspects of their education by survey participants.

Responses to later questions indicated that this is because participants felt these areas could be

learned on one’s own. Interface design and user experience design principles were rated as more

important overall, with few participants indicating they were “unimportant”. A Kruskal-Wallis

test revealed that those who had taken Computing courses were significantly more likely to feel

that specific programming languages (H(3) = 22.665, p<0.001) were well stressed in school5.

Those who had taken some courses in both areas were most likely to indicate that web languages

and technologies (H(3) = 15.108, p< 0.01) and technologies were well stressed in school.

Knowledge of Interface Design principles and User Experience Design principles were

found to be highly important by survey participants, as can be seen in Figure 21. A Kruskal-

Wallis test comparing participants with different formal educational backgrounds indicated that

there were significant differences in the degree to which participants felt prepared by their formal

5 When correcting for Type I error wtih Holm’s sequential Bonferroni approach, only the pairwise

comparison of “Neither” to “Computing courses only” and “ID/Education courses only” to “Computing courses
only” show statistically significant results. However, without this correction, a comparison of “ID/Education
related courses only” to “Both” also indicates a statistically significant difference.

0% 20% 40% 60% 80% 100%

Critical/Analytical Thinking ***

Problem Solving ***

Ability to Teach Myself ***

Importance on the Job (upper)

Unimportant

Moderately Important

Very Important

Degree Stressed in School (lower)

Not at All Well

Somewhat

A Great Deal
N=76

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 140

education for each of these items (H(3) = 16.232, p=0.001 for “Interface Design principles” and

H(3) = 14.507, p<0.01 for “User Experience Design principles”). Pairwise comparisons

between groups found that those who had taken at least some courses in both Computing and

ID/Education were significantly more likely to feel that these topics had been stressed than other

groups6. Results for these two questions were nearly identical, leading the author to question

whether participants believe there is a difference between “Interface Design principles” and

“User Experience Design principles”.

Figure 21 Survey participants' responses to specific technical skills and knowledge

* statistically significant, p<0.05, ** statistically significant, p<0.01, *** statistically significant, p<0.001

Figure 22, Figure 23, and Figure 24 show various types of resources and strategies used

to learn on the job. As was discussed in the previous section on interviewee’s self-learning

strategies, each of these areas is seen as an important component of a software design

6 When correcting for Type I error wtih Holm’s sequential Bonferroni approach, only the pairwise

comparison of “Neither” to “Computing courses only” and “Neither” to “Both” show statistically significant results.
However, without this correction, a comparison of “ID/Education related courses only” to “Both” also indicates a
statistically significant difference for “Interface Design principles” (p=0.042). As there is no statistically
significant difference between “Computing courses only” and “ID/Education courses only”, one cannot conclude
that either of these types of courses is better in preparing students for this area.

0% 20% 40% 60% 80% 100%
Knowledge of Specific

Programming Languages

Knowledge of Web
Languages/Technologies ***

Interface Design Principles ***

User Experience Design
Principles ***

Importance on the Job (upper)

Unimportant

Moderately Important

Very Important

Degree Stressed in School (lower)

Not at All Well

Somewhat

A Great Deal

N=76

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 141

professionals’ work life. Therefore, it is not surprising that very few participants found these

areas “unimportant”. However, based on participants’ recollections, these areas do not appear to

be stressed by many degree programs.

Figure 22 Survey participants' responses to using resources to learn on the job

* statistically significant, p<0.05, ** statistically significant, p<0.01, *** statistically significant, p<0.001

Figure 23 Survey participants' responses to learning from experimenting and good coding practices

* statistically significant, p<0.05, ** statistically significant, p<0.01, *** statistically significant, p<0.001

0% 20% 40% 60% 80% 100%

Using Peers as a Resource***

Learning from Examples***

Resolve Problem by Searching
for Similar Error Online***

Importance on the Job (upper)

Unimportant

Moderately Important

Very Important

Degree Stressed in School (lower)

Not at All Well

Somewhat
N=76

0% 20% 40% 60% 80% 100%
Creating own Sample/Prototype

before Incorporating***

Developing & Testing in Small
Increments***

Reverse Engineer Existing
Products***

Keeping Detailed Notes on
Design Decisions**

Writing Detailed Comments

Importance on the Job (upper)

Unimportant

Moderately Important

Very Important

Degree Stressed in School (lower)

Not at All Well

Somewhat

A Great Deal

N=74

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 142

Figure 24 Survey participants' responses to precedent use at the design and programming-level

* statistically significant, p<0.05, ** statistically significant, p<0.01, *** statistically significant, p<0.001

4.5 Types of Non-formal Educational Experiences

As was discussed in earlier sections, self-learning is a crucial skill in this field, and one

that participants often enjoy. This section discusses the types of non-formal sources available and

how they are used. Data presented in this section is based on interviews.

4.5.1 Sources and Materials Used

4.5.1.1 Traditional print materials

Because of the preference for learning on one’s own time, published materials are an

especially useful source. Traditional print materials, including books, “trade books”, and journal

articles are not used as frequently as they were prior to the ubiquity of materials available on the

internet. However, books may be used when a depth is required. The internet may be used when

looking for print materials, as it can be helpful that some online sources are cross-referenced

with library search catalogs. Unfortunately, books themselves are not as easily searchable as

0% 20% 40% 60% 80% 100%
Improve by Studying Other's

Code/Documetns***

Apply Lessons Learned to New,
Unrelated Projects***

Recongize Similarities to Old
Technologies***

Look for High-Level View***

Know When to Reuse Code***

Know When to Put Aside Pre-
existing Paradigms***

Importance on the Job (upper)

Unimportant

Moderately Important

Very Important

Degree Stressed in School (lower)

Not at All Well

Somewhat

A Great Deal

N=74

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 143

online materials and technical books rapidly become out-dated. Journal subscriptions are often

used to keep an eye on new trends, but participants indicated that their number of journal

subscriptions has also gone down as there are useful sources available for free online.

4.5.1.2 Online sources

Online sources are not only free and readily available, but also easily searched for just-in-

time information or help. These resources include web-sites, discussion forums or online

discussion community groups, RSS feeds, and real-time video tutorials. These sources have a

number of advantages, including the ability to find multiple approaches to the same problem, and

the availability of other people’s responses to what you read. This is helpful, since one of the

complaints about internet sources is that not all contain quality information. “I love sites that

have comments, because I find that comments often give you the best feedback on the quality of

something” (I3). However, Internet searches tend to be less successful when tackling an ill-

formed question; “if you don’t know how to frame the question, it’s very hard to go to the

internet” (I 3).

4.5.1.3 Other People

There are many situations in which the best way to learn is to get access to other people.

They are especially helpful when an issue is complex, or when an answer is needed in a hurry.

They can help you to find good sources of information, or identify poor sources. They may also

help you to identify an alternative solution to an issue you are tackling. In addition to colleagues

and end-users, becoming a member of a professional organization or an informal community

(such as an online forum) is a good way to connect with others.

Subject-matter-experts are good sources of information in their own particular area of

expertise. These may include co-workers or personal contacts, a client, or even an expert

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 144

consultant hired for the purpose of helping or training the team on specific topics. A team may

also purposely develop their own content experts. As one interviewee explained, his team’s goal

is “always to try to build internal capacity” by developing expertise in certain areas (I6). Subject-

matter-experts are approached for a number of reasons. They may have expertise in a particular

role or field, for example, one interviewee with a technical background explained that he would

approach the instructional designers on his team in to get a better understanding of how to

present related topics in a way that “flows” well for learners. “I’m not an expert of that particular

area…it’s going beyond strictly usability. Because we are in a specific field, so then I would

seek out the expertise of someone else.” (I4) A colleague may also be approached on non-

technical matters.

If it’s truly non-technical knowledge, mostly I network with people that I’ve

worked with before. Because usually what I try to figure out is, you know, how to

navigate the corporate infrastructure. And so I’ll go to people that I’ve worked

with in the past who I know have been in similar situations and I’ll say, “hey I ran

up against this situation, what suggestions do you have?” (I 9)

When designing instructional software, designers often need to find subject matter experts on

a particular topic area, for the purpose of “knowledge transfer” of jargon and related concepts.

These may be content area specialists, or may be users. One participant discussed working on a

training system for a special mail-sorting device.

I was capturing their knowledge, and encoding it in such a way that it would

facilitate other people who had less skill and less knowledge to finding the same

sorts of problems. So, you know, it would start up with questions like, “How is it

failing, is the mail getting jammed up? If it’s getting jammed up here, are the

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 145

letters being crumpled, or are they just stacking up on one another? Are they

flying all over the floor? Is ink smearing? Is it failing to read the addresses?” So it

ask a series of questions, and at the terminal node of the system it would start to

make recommendations, do this kind of test, replace this module, clean this part

of the machine, try it again, those sorts of things. Because the people who repair

these machines – some of had 10, 20 years of experience with the machines, but

the younger people did not have their level of skill and knowledge, and yet the

machines are still in use…that’s why. So, I was capturing expertise from an older

person.” (I 7)

Working with experienced colleagues and other contacts has other types of advantages.

People in different roles learn from one another over time. “I think that as we work

together…there’s something that happens as you work with a programmer and the designer, and,

you know… all of you start to learn from each-other.” (I2) Learning can occur simply by

observing and interacting with others.

I spend a lot of time actually listening to them and learning from [programmers]

and understanding what they do… earlier in my career I really would sit down

with them and have them explain to me what they do and why they do it and, you

know whenever something would go majorly wrong because of the code I’d have

them walk me through what went wrong, why it went wrong and what should

have been done instead, and as a result I’ve learned a lot about how to write code

well. Even though I cannot do it myself, I can often tell by the way a developer is

talking about what they are doing, whether they’re doing it right or not. Not the

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 146

specific thing that they’re writing, but whether they’re structuring and

approaching the problem in a good way. (I 9)

In one case, a consultant with expertise in a specific area was brought in to help on a

project and train the rest of the team to use a new technology.

We had a consultant come in for a year and we started from defining the

requirements from the very beginning of the project to the end. And that

seemed to work for us, for the team. Because you learn how to think, and you

learn how to build, and you get to see what the RW problems are. (I 1)

Co-worker’s critique can help software designers to improve. This may include formal

code-reviews, or may be more informal. As one explained, he appreciated working in a larger

organization earlier in his career, as there were “lots of smart people that come and kind of beat

me about the head and shoulders when I wrote code and say, “oh, you know, there’s really a

better way to do this”(I 3). Content experts can be called in to review work to ensure that it

meets standards, and colleagues from another institution with a similar mission can review the

work to determine whether it meets learner’s needs (at least in the case of government or non-

profit work). Users themselves can be a good source of feedback. “We would download our

product and get…feedback from the people in the field and users. For example we developed an

English-only project, got feedback from people that that was great, but can we do it in Spanish.”

(I 6).

 Human beings are especially helpful in getting past areas where you have an incomplete

understanding.

And a lot of times I’ll [look things up on the internet] first, and become dangerous

with that knowledge, and then go to one of my peers or subordinates and sit down

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 147

with them and say, “now it seems to be this way, that’s what I understand, can

you fill in the holes?” (I 9)

Working together on a problem can be especially helpful.

Sometimes not knowing how to frame the question, those are the exact problems

that working with another person is perfect for, because together you can muddle

through it, together you can find patterns that you hadn’t seen before. [sic] (I3)

4.5.1.4 Training courses

Non-university training courses are another way to pick up new skills, or at least to help

you to get to a certain point which you can build upon on your own. A good trainer can help

provide a solid foundation for further learning. One interviewee who prefers short, intensive

learning experiences takes week-long courses on programming and web-design at the “Big Nerd

Ranch” (I2). Others indicated that he preferred to take courses for areas outside of their own

expertise, such as “color theory and type” (I3) or usability testing (I9). However, other

participants were not likely to take training courses, and some actively avoided them. Courses

may not be appropriate for solving specific problems at hand, and may not teach what one really

wants to know. Useful courses may not be available locally.

4.5.1.5 Conferences

Conferences can be “inspirational” and give professionals a chance to meet and talk with

others who have similar issues and challenges. However, they may be less useful as a learning

tool. As one interviewee explained,

I find that the signal to noise ratio at a conference for me hasn’t advanced my

career has gone down a lot because most of what people are saying I either know,

or I know that I don’t need to know. It’s very hard to find stuff that I don’t know

that I need to know with respect to the conference.” (I9).

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 148

However, he felt that attending conferences outside of his own area of expertise was especially

helpful.

An exception would be when I actually step completely outside of the field, so I

went to a conference … about children’s media, because we were doing some pre-

k stuff for the first time… and I felt every minute I was there I was learning. That

was because I was outside of my field, not inside of it. (I9)

Expense is another concern in attending conferences.

4.5.1.6 Examples of other’s work

As will be explained in section 4.5.2, examples of other’s work can be particularly

important resources in self-learning. These can include entire designs, or can be at the code

level. A software designer may spend time generally looking for good examples, or a sample

could be sought out when trying to understand how to solve a particular type of problem or learn

how to use a particular type of technology.

One participant mentioned that when he began working in this field in the 1980s, there

was not much support available in his formal educational program for the development of the

type of software he was working on. Nor were there a lot of good models of educational

software.

So that was kind of up to us, and it was up to me as I was doing my own software,

and based on the models that was out there so far… there was one big set of

programs in our field that had been developed at the University of Deloware and

actually another set from the University of Illinois at Urbana Champagne, that

both had relied on previous work with the PLATO system, which was a very big

mainframe-based system from the 70s, that was specifically oriented towards the

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 149

educational area. The PLATO was an acronym for something like ‘personalized

learning and training operation’. So they, I presume they had done a lot

more…uh… real… critical design work in those programs, they were done with

large grants and things, federal and university grants, and …they had lots of

development time involved, and so they, I guess, sort of served as the models in

our field. (I5)

At a lower level, software designers learn by studying. “[I] usually start by looking at

programs that do a good job, and start deconstructing them…so, getting under the hood.” (I3)

Developers generally do not simply look at code samples; they learn by installing, running, and

modifying them.

So, I usually start with something that is doing kind of what I want it to do, but

not quite, and then I start to modify it, and tweak it, and through that I have to

figure out how the code works and how it’s constructed. (I 3)

In addition to learning new skills, samples may be helpful to “challenge yourself by

seeing how other organizations do the same thing” (I 1). Some participants regularly spend time

“looking around” to see what others have done. One interviewee mentioned that web sites from

professionals in other design fields are particularly good sources of inspiration.

I look at design sites, visual design, information design, user experience design. I

try to cast my net fairly wide, and look for inspiration. I especially like looking at

design sites, visual design sites even though I don’t do a lot of visual

design….(I3)

He explained that he does not directly incorporate what he sees into his own designs.

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 150

I think it’s more that there’s stuff that gets wedged back in some portion of my

brain that then I use creatively and gets expressed in the work that I do… it does

occasionally express itself in my work, when I’m having to do User Experience

design or I’m working with user experience designers, because I’ve been

looking around a lot, I can bring new ideas to the table, so I can say “ah, I saw a

widget that did this and it worked in this way, and it was really cool, and we

might try that here”… but [generally] I just feel that it kind of like it kind of is

the fuel that I use in my own creative work. It’s kind of like the raw material…

I don’t always feel like it expresses itself directly, but I always feel like I’m

better able to do my work when I’m well-fed so to speak. I know that sounds all

vague and a little touchy feely, but that’s definitely how I feel about it. (I 3)

4.5.1.7 Other sources

Other sources mentioned by individuals included learning from teaching, searchable

publications, and going to museums for inspiration. A few participants mentioned the need for

some way to help (others on the team) to learn “soft skills”, but they were not sure what

mechanism to recommend.

4.5.1.8 Choosing and mixing sources

When choosing a source, participants often go to the easiest or most convenient source
first. Some sources are particularly obvious for a given topic.

If I know that there’s somebody around know knows something really well, and

that’s the first thing that thing that comes into my head, that’s probably where I’d

start. On the other hand, the flip side, is that if I know where a resource is online,

that is what I’ll reach for. So, it’s really more what pops into my head.(I3)

Participants frequently use a mixture of sources to learn a new skill or concept.

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 151

Generally if…I actually kind of use an amalgam for most things. So I will start…

for example, if I wanted to learn a programing language, most likely I will have

been already reading articles about it, I would have done a couple of practice

exercises that I found online, or whatever, and that would be kind of forming the

foundation of forming my interest, and do I really want to do this. Then I would

look for, hey, is there a week long course I could take to get form absolute

beginner to moderately self-sufficient beginner. And then, it’s getting to that

plateau. Then you continue with getting different articles and trying different

things to get what you actually accomplish some of it. (I 2)

4.5.2 Self-learning strategies

Learning new skills, programming languages and approaches is a natural part of working

on a software design project. This often means learning something new on a just-in-time basis to

resolve an immediate need.

I also find I learn the most when I’m programming, when I am working on my

own problem, when I’m working on something that’s right in front of me and

very tangible, and understand the workings of the problem. I have… noticed that

the further away a piece of code is from the thing that I am trying to do at the

moment, the less I can learn from it. (I3)

As mentioned earlier, it is typical to learn from samples of other’s work, often through a process

of experimentation. This may involve moving between one or more examples and making small

changes, then trying out the technique on one’s own code.

I also do a fair amount of experimental and exploratory work of my own. So,

sometimes I’ll be called upon to say, well we need to do, I don’t know, something

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 152

like security. So I will go out and do an internet search and turn up 2 or 3

different approaches to doing some kind of security thing. And then I’ll... If the

source is available to me, I will download it and will actually try writing some

software purely on my own, just for the sake of understanding how that works.

So it’s an experimental approach to understanding technology. (I7)

This type of experimentation can involve a fair amount of trial and error.

And then practice, I mean, especially with design… “practice” is a weird word for

it though. It’s more like trying and failing, many times. Um… it’s not like you

practice skating and you get better. The way I look at it anyway, is there are ten-

thousand failures and you rule out all except for the one you want. (I2)

After explaining this process, one interviewee reflected:

it’s interesting, “self-taught” makes it… sounds like it is all comes out of my

head, but it’s more like I know that I am standing on the shoulders of giants and I

know where to find the next giant. (I3)

One participant purposefully created notes on his own projects, problems, and solutions, which

he could refer to in similar situations in the future.

So, I keep day to day notes on exactly what I am doing with that software and the

project, what succeeds, what fails, what is not working, what the data looks like,

where it’s broken, how it’s broken, error messages, XML notations, just

everything, everything, on a day to day basis. So that I can go back and any point

and “how do I get from here to there”. Also explains sort of blind alleys I went

down and why I abandoned them, and it’s all in there, so if I forget I can look it

up. Not everybody does that. (I7)

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 153

In addition to updating technical knowledge and improving design skills, these types of self-

learning approaches help software design professionals to gain experience in their specific

domain over time.

4.6 Recommendations for an Ideal Undergraduate Program

Interviewees and survey participants were both asked to describe what they felt would be

an “ideal bachelor’s degree program to prepare someone for your current position.” Survey

participants responded to several closed-ended questions regarding the degree type, the

importance of domain-specific content, and the importance of technical content. An open-ended

question prompted them to explain what other traits such a degree program should have. Forty-

four of the 74 participants who reached that point of the survey provided at least some response

to this question, though some participants responded only briefly, while others provided fairly

detailed responses.

Themes discussed in this section were derived from the survey questions as well as

interview responses on related questions. Traits that interviewees indicated were particularly

valuable in their own formal education were also included in the analysis.

4.6.1 Degree Type

Interviewees and survey participants had a number of recommendations for an ideal

undergraduate program. Recommendations varied depending on the participants’ own

educational background and experiences. For example, an interviewee with a background in

Computer Science said:

I think computer science degree is the most useful. A CS degree teaches the

fundamentals of computers and software, and there are many basic concepts that

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 154

you need to know to be a good programmer or a specialist in this field… no

matter what you do. (I7)

In contrast, others indicated that ideally they would like to include some time in each

field, but were concerned about how realistic that might be.

I don’t think there is another one single thing; you’d probably need a good

mixture. You’d probably, you really do need an educational background, but then

you need to complement that with technical skills. So I think, either one would

work, if you had formal education in one, and informal on the other, that would

probably work. If you had formal education in both, that would probably be best

(I4)

Others found their own backgrounds to be most useful. “My masters HCI degree did a lot

of it. I would probably retool it and add a year specifically for education software, I would add

time in the ed. school.” (I2) “A science degree… For debugging the software and maintaining a

stable system, you need to be able to solve problems, using the scientific method.” (I6).

One pointed out that the type of degree should depend on the personality of the student.

Someone like me, computer science was really a good choice. Worked out really

well for me. But someone with a different personality or experiential bent, I

wouldn’t recommend it for everyone, because they are not technically minded like

I am, and it is kind of a waste of time for you. (I8)

Others noted that any path could work, or came up with interesting alternative paths.

“Whatever they are most passionate about, that is what they should do. I am a big believer in

Joseph Campbell – follow whatever you are passionate about and makes you excited” (I6). “A

mix of creativity with art and design combined with user experience design” (S54). “Either

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 155

instructional design or sainthood, with a maths minor” (S17, whose role includes development

and instructional design, and who is also a K-12 teacher.)

Closed-ended survey responses followed a similar pattern. As can be seen in Table 20,

those with a background in computing-related areas suggest similar degrees. Interestingly, those

with a background in instructional design or education or a background in both areas are more

likely to recommend a hybrid degree or double-major, which was also the most common

response overall.

Table 20 Suggested degree type for an ideal degree program.

 All Computing
only
(N=25)

ID/Ed only
(N=13)

Both
(N=24)

Neither
(N=12)

Computer Science 12.2% 20.0% 0.0% 8.3% 16.7%

Software Engineering 17.6% 44.0% 7.7% 0.0% 8.3%

Information Systems 0% 0.0% 0.0% 0.0% 0.0%

Human Computer Interaction Design 5.4% 8.0% 0.0% 0.0% 16.7%

Instructional Systems Technology/Instructional
Design

20.3% 4.0% 15.4% 37.5% 25.0%

Other Education-related 0% 0.0% 0.0% 0.0% 0.0%

Hybrid program or double major including CS
(or similar) and Education (or similar)

25.7% 8.0% 46.2% 41.7% 8.3%

Doesn’t matter/any path would work 2.7% 0.0% 7.7% 0.0% 8.3%

A degree has little value for working in this field. 0% 0.0% 0.0% 0.0% 0.0%

Other (please specify) 16.2% 16.0% 23.1% 12.5% 16.7%

Note: The most common responses for each group highlighted in light red.

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 156

When asked whether it is important for students to have a domain-specific background

(e.g. a background in education when working on educational software) (see Table 21) or

whether it is important to have technical skills (see Table 22), responses also varied depending

on participants’ own background, with those with a background in instructional design being

much less likely than other groups to indicate that domain-specific knowledge is not important

and those with a background in computing indicating that technical knowledge is necessary.

Some interviewees indicated that although domain-specific knowledge is useful, having

experience in other domains could be useful as well.

I find myself looking at each course as a spoke in a wheel where there is always

crossover to other domains. For example, as I pursued my master's degree, I

found that courses I was taking could be used outside of the internet security

realm and applied to an educational realm in terms of student education and

safety. I do look at educational software and gaming as an instructional medium

that needs some new foci so that transference of knowledge is obtainable and not

just the entertainment value. (S73 interview)

Table 21 Importance of “domain-specific specialization or focus within this type of degree program (such as

“education” or even a more specific area such as ‘language education’ or ‘science education’)” in an ideal

degree program.

 All
(N=74)

Computing
only (N=25)

ID/Ed only
(N=13)

Both
(N=24)

Neither
(N=12)

Yes, it is important to focus on the domain one
plans to work in

27.0% 32.0% 30.8% 25.0% 16.7%

Yes, students need to work within one domain to
get practice in a realistic project, but the specific
domain is not important

29.7% 16.0% 38.5% 37.5% 33.3%

No, not important 35.1% 40.0% 23.1% 29.2% 50.0%

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 157

Other (please specify) 8.1% 12.0% 7.7% 8.3% 0.0%

Note: Most common responses for each group are highlighted in light red. Closed-ended options were based on
common interview responses.

Table 22 Importance of “formal training in programming languages and other technical aspects of software

design/development” in an ideal degree program.

 All
(N=74)

Computing-
only (N=25)

ID/Ed only
(N=13)

Both
(N=24)

Neither
(N=12)

Yes, it is important 44.6% 68.0% 23.1% 45.8% 16.7%

Yes, important, but not as important as a solid
background in education or instruction

12.2% 4.0% 15.4% 25.0% 0.0%

Yes, it is important, but not as important as the
ability to think critically

28.4% 16.0% 38.5% 25.0% 50.0%

No, not important – people can learn that on their
own

10.8% 4.0% 23.1% 0.0% 33.3%

Other (please specify) 4.1% 8.0% 0.0% 4.2% 0.0%

Note: Most common responses for each group are highlighted in light red. Closed-ended options were based on
interview responses.

However, across all groups a fair number of participants indicated that it was not

necessary to have domain-specific preparation, or that having domain-specific examples and

projects were important, but only in order to provide a realistic context to learn in – the specific

domain one “practiced” with (e.g. “education” for those with a computing background) was not

important. For example, one interviewee said:

I think it’s useful to be exposed to the idea of immersing yourself into an industry

or topic-specific area, as a way of understanding how to go about doing such a

thing, not that what they learn specifically will be of value, but the amount of

processing and the communications and learning skills that are developed in the

process of trying out one or two of these areas is useful (I7).

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 158

From this point of view, the ability to develop requirements based on user (e.g. student)

needs, work in a multi-disciplinary team, and think creatively is more important than knowledge

in a specific content area. Participants also explained that if they needed additional expertise,

they would contact a Subject Matter Expert, such as the team’s Instructional Designer or another

colleague or client with expertise in the relevant area. It is initially surprising that despite

differences with other groups, over 50% of those with an instructional design background

indicated that domain-specific knowledge is either unimportant or only important as an area for

practice during a degree program. However, the question literally read “Is it important to have a

domain-specific specialization or focus within this type of degree program (such as ‘education’

or even a more specific area such as ‘language education’ or ‘science education’)?” For those

with an instructional design background, the “domain-specific knowledge” might have alluded to

a more focused area such as “science education for 5th graders”. For interview participants with

a background in Computer Science or a related field, however, “education” or “instruction” was

itself a specific domain which could be learned over time as one works with clients and end-

users to create requirements for a project.

Similarly, a number of participants indicated that although a background in Computing is

helpful, it is not as important as critical thinking or other traits such as “people skills” and

flexibility. For example, one survey participant said:

If someone studies computer science or software engineering or IT or education,

those would all be very helpful tools to bring, but they are not necessary to being

a good QA engineer. The ideal program would mix the practical experience of

engineering/software/technology with people skills, puzzle-solving, teamwork,

and flexibility. (S62)

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 159

However, as is evident in Table 22, the vast majority of participants (over 85%) indicated

that having formal training in programming and other technical topics is important, though a fair

proportion of these indicated that this was not as important as a program that fostered critical

thinking (28.4%) or topics in education or instruction (12.2%). Interestingly, among those who

had at least some formal education in both areas, the most common response was that a technical

background was important, while the majority of the same group indicated that domain-specific

knowledge was either unimportant, or important only as an area in which to practice.

4.6.2 Traits to foster in graduates

Many participants focused on the types of graduates that should be produced by the

degree program. Traits that a program should foster in graduates are discussed in the following

sub-sections.

4.6.2.1 Communication and Team skills

The highest number of recommendations related to the development of communication

and interpersonal skills. Communication skills included the ability to make a presentation, as

well as general and technical writing. These skills play an important role in fostering

collaboration and team-work, as well as the ability to communicate with those outside of the

organization.

One interviewee reflected:

I don’t regret one minute I spent as an English degree student, because those skills

have helped me to communicate with my supervisors, with my peers, with my

subordinates, with customers…I mean, I could not have taken, in my opinion, a

more valuable skill into the workplace.

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 160

Because I’m an effective communicator, I feel like I’ve been given more

opportunities to participate in strategic circles, because a lot of the people who

strategize don’t necessarily know how to communicate, and they sort of invite

you in because they know that you’ll do a good job of it and then suddenly you’re

sitting at the table. I may be overstating this a bit, but I really do feel strongly that

it’s made a big difference in my career. (I9)

Good communication skills are especially important when communicating a difficult message.

They need excellent people skills in order to spend a career telling other people

that their code has problems or why the product can't ship yet. (S62)

One survey response stressed the importance of listening skills: “Ability to communicate ideas

and LISTEN to others” (S64). An interviewee also stressed that getting the information one

needs is a skill that can and should be taught. “Learning to ask the right questions to the right

individuals is something that does not necessarily come easy to me however there were courses

that provided a framework of what kinds of questions to ask.” (S73 interview)

4.6.2.2 Design Judgment

As discussed earlier, good design judgment is crucial in these types of design situations.

A number of suggestions for an ideal program related to developing judgement skills. One

interviewee specifically recommended “practical training that helps them to develop design

judgment and how to make decisions when faced with different types of problem” (I 8). Others

mentioned things students need to learn to be able to make good design judgments.

Some recommendations could be applied to any software design project. For example, a

software designer should avoiding “designing yourself into a corner” (I2). It is important to

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 161

know when to say no to a strict adherence to theory when it is not appropriate, and know when it

is appropriate to reuse code and when it is not (S56).

Other recommendations are more specific to the domain of educational software design.

For example, it is important to know what educational applications are possible and what is

suited to the type of technology being used (S74 interview) and to “analyz[e] critically the use of

technology at all as an instructional tool, and what all the biases are that are involved in that”

(I5). Content must always be considered along with other design aspects; “Content is king.

Good content trumps flashy design.” (I6).

The task of acquiring domain-specific knowledge is itself a unique skill which is

developed over time. One interviewee called this learning “subject-matter patterns.” She

explained:

I have found that all disciplines have critical structures or patterns to their

knowledge. These structures give learners something with which to organize the

knowledge to be assimilated during their course and help to give a common frame

of reference to relate to practitioners in the discipline. An example of this might

be for an apprentice mechanic to know the components of a car motor: what they

are, what they do, and how they interact. In a medical realm, this would be

anatomy, physiology and pathophysiology. Each of the major areas have sub-

areas with their own patterns – sort of like an outline of written material, but often

very specific to the discipline involved. (s74 interview)

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 162

4.6.2.3 Creativity

Fostering creativity was another commonly recurring theme. As one survey participant

put it, “people just need to be creative and go from there. All else will follow” (S67). An

interview participant explained:

They also need the creativity side too…a lot of the people in my CS program

were really good technically, but [weren’t creative]. Really important – if you are

not creative in development you lose a part of your competitive edge. When you

thinking about it most people in CS programs can create a complex list with data-

structures in memory, [but] so what – not everyone knows how to take those data

structures and use them to transform the look and feel of a user application.

When asked whether this skill is specific to education or generally useful for software

developers, he responded:

I think creativity is a multi-disciplinary thing. There is no one discipline that can

claim creativity. It crosses borders. (I8)

4.6.2.4 Seeing other Perspectives

The ability to see other perspectives and understand how others think is important in

working with others on a team, as well as in designing something that works for users.

Recommendations for learning social sciences such as anthropology and sociology (discussed in

section 4.6.4.6) often relate to this need.

 If your education doesn't help you to really understand that not everyone learns

the way that you do, then you have missed something critical. This is much more

important to educational software than to general UI design. (S9)

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 163

4.6.2.5 Critical Thinking

The term “critical thinking” without further explanation was frequently included in short

survey responses. This is unsurprising, considering that survey participants nearly universally

indicated this is a highly important skill on the job. Recommendations for fostering critical

thinking include labs and projects (including those in unrelated domains) and “student

presentations and critique of existing software” (S74 interview).

4.6.2.6 Strategic, methodical thought process for problem solving

Another very frequent theme related to the types of thinking that go into effective

problem solving. Terms used by various participants to describe this type of thinking included

“systematic thinking”, “strategic thinking”, “scientific thinking”, “logic thinking”, and

“structured thinking”. One survey participant summarized it as the “potential to understand the

problem, critically analyze it, and solve it” (S11). As discussed in section 4.6.2.5, critical

thinking skills were often considered even more important than specific technical skills. “They

need to come out of the program knowing the basic skills of the trade, but they need to be

problem-solvers at heart” (s54).

Participants’ personal experiences indicate that this type of thinking can be developed

through courses in a variety of areas, including English, Psychology, and Physics, as well as in

courses related directly to software design. “I think the most important thing is the way you

think. [Computer engineering] courses show you to think in a certain structured way, to

decompose problems into smaller bits.” (I1) Once a problem is analyzed, it can be effectively

communicated. One participant explained that his English degree was especially helpful in

teaching him to do this type of analysis. “[the] ability to do a thorough and clean and defensible

analysis, and then to communicate it clearly, has benefitted me in every single aspect of my

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 164

work” (I9). Another interviewee with a background in psychology explained how learning – and

frequently using – the scientific method in school prepared him to use this type of thinking in the

future.

The main thing with the psychology degree that was useful is… the research

methodologies, going through the very deliberative process of coming up with a

hypothesis and testing it, and….you know. Part of that is understanding and

appreciating research methods, but also understanding and appreciating just a

methodological approach to a given problem.

It’s a discipline, it’s like exercise. When you start exercising it is very hard and

uncomfortable and your body rebels against you, but if you keep doing it,

eventually it becomes natural, the body becomes accustomed to it, it is no longer

rebelling as much…. It’s going through the steps… And in my undergrad, we

would go through those steps not just in the thesis but also in papers and different

things, and if you go through those steps, you have kind of a routine. You know

what I mean? (I2)

He explained how this is useful in software design:

Designing software is a very broad thing. You know, I’m going to design an

application…that means a hundred-thousand different things have to happen.

And it’s helpful to be able to break out what those things are, so that they can

actually be accomplished. So, for example, again, defining what the software is

supposed to do. Defining who the software is supposed to work for. These are

individual categories of tasks that need to happen. (I2)

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 165

One interview participant reflected that his understanding of what he had learned evolved

over time.

If you define preparation as being about what you learn and the kind of structures

for thinking about/addressing your problem that you develop along the way then

yeah [his formal education] did [prepare him]. You learn these ways of thinking

sometimes from disagreeing with the approaches that you were taught or that the

professors used. You know, you learn from the hidden curriculum of the

educational environment where you are challenge not just by your professor but

by your peers and those trying to understand what you do and how you make a

difference. (I 8)

In addition to analyzing a problem, strategic thinking helps professionals to come up with

appropriate designs. “I look for people who are strategic thinkers...people who can see and

visualize a future world where the solution is already in place then figure out how to create the

solution.” (S54). Students must also be prepared to use their problem-solving skills while

developing and testing a design “the ability to tackle and solve puzzles (i.e. things that are going

wrong with the software)” (s62).

4.6.2.7 Technical Literacy for areas outside of one’s own expertise

Non-specialists in an area need to be sufficiently technically literate to be able to

communicate with people in other roles and appreciate what they do, to know what is possible,

and to inspire creativity in the overall design. For some roles, it is “Not necessary to know how

to program, but need to "get" technology, understand the underlying principles behind what the

programmers are doing” (s15). Technical literacy extends to areas beyond programing. “I do

seek people who are technically literate in the latest art, illustration, design and animation

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 166

technology,” explained one survey participant, although he went on to explain that it is even

more important that potential employees can see the big picture and have a passion for bringing

good solutions to life (s54).

Some amount of formal background in the type of medium one will work on is also

valuable. For example, one survey participant who recommended an instructional design degree

also recommended inclusion of 3D modeling courses. When asked to explain this in a follow-up

interview, she responded, “I would recommend [inclusion of 3D modeling] in a degree program

as it provides an understanding of how hard it is to create these things.” (S73 interview) She

recommended courses related to game design for similar reasons. “An understanding of the

concepts of gaming, including the question why which is what keeps kids playing the game, is

vital to the success of a program. Adapting concepts into a game format and then being able to

transfer the knowledge to real life is a tough road” (s73).

4.6.2.8 Project Management Skills

Project management related skills to be developed in graduates include the ability to

break a problem down into manageable pieces and the ability to balance budget and time

constraints. One interviewee recommended that students be given planning exercises to practice

these skills, after which students would be required to design and develop the project.

Perhaps assign a “planning” exercise for a student to outline a project of his/her

choice – first assuming unlimited resources, then applying budget and time

constraints so that the client knows the optimum, recommended and minimum

possibilities for their project. (S74 interview)

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 167

4.6.2.9 Self-learning skills and outlook

Participants recommended encouraging a positive attitude towards acquiring knowledge

and new ways of thinking. Graduates should enjoy staying on the cutting edge (S62) and

“quickly pick up new technologies as they emerge” (s56), as well as having the “potential to get

acquaint to new environments quickly” (s11). They should be open to new experiences. One

participant warned that this is “a necessity – the field changes rapidly. If change is outside your

comfort zone, consider a different career” (s43 interview). In addition to learning new things,

“being able to let go of the past and be able to move forward is a really important kind of

orientation to have, because things change so quickly” (I1).

This outlook is not restricted to technical matters. “They must have a desire to discover

the new, because we are constantly looking for new ways to help kids learn” (S54). This may

include new technologies, or new instructional approaches. “Instructional models change

regularly to adapt to new ways in which users access and use information in academia.” (S69).

4.6.3 Passion for this work

In addition to skills and knowledge, it is important for new graduates to bring a passion

for working in this area. One survey participant recommended the following traits in an ideal

graduate: “an interest in changing education methods an interest in programming an interested in

designing educational games and simulations [sic]” (S63). Another recommended “love for

making something perfect (or at least better)” and an “interest in technology and learning new

things”(s62).

4.6.3.1 Other aspects

Other traits that should be developed in a graduate include:

o Able to approach information as a learner

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 168

o Able to play many roles
o Attention to Detail
o Balance budget and deadline constraints
o Be a good teacher
o Can evaluate claims and evidence
o Can see big picture
o Can work across domains
o Entrepreneurial
o Focus on learner's needs
o Focus on the outcome
o Focus on the process
o How to think out of the box
o Know how to scale design up to be used by lots of users
o Leadership qualities
o Object-oriented thinking
o Pushes boundaries
o Technical aptitude
o Understand EDUCATIONAL aspects needed in software

4.6.4 Program Curriculum

The following sections include recommendations made about courses and experiences

that should be included in the ideal Bachelor’s program.

4.6.4.1 Computing foundations

These were the most frequently mentioned specific course areas. Fourteen individuals

referred generally to foundational courses by terms like “programming”, “computer science

basics”, or “solid grounding in basic computer science principles” (s12). The most frequently

mentioned topic was “Database design”. Other specific topics mentioned include7:

o Algorithms
o Computer organization
o Concepts of programming languages
o Datastructures
o Efficient programming - does not assume unlimited resources
o File handling

7 An external reviewer agreed that the topics mentioned in this category are generally considered to be

foundational , while the topics included in “Computing specialties” are areas of specialization.

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 169

o Networking
o Object oriented design and object oriented programing
o Operating systems
o Processes (unclear)
o SE foundations
o Systems analysis and design

Three individuals mentioned the names of specific programming languages, but these

appeared to be examples rather than recommended topics. Others mentioned the importance of

not focusing too heavily on any specific programming language “Computing should provide…

strong foundational skills not just a language. Then any language can be utilized” (s23). Another

explained, “There is a lot that is unstable and will change, but the way you think won’t. So I

think it’s more important to get the basics in rather than any specific technology” (I1). Others

suggested the importance of having exposure to both depth and breadth of experiences.

4.6.4.2 Computing specialty areas

The following specialty areas were each mentioned individuals or a small number of

participants.

• 3D modeling
• AI
• Game design
• Hardware design and experience
• How to use computation for RW problem solving
• IT strategies and analysis
• Security
• Technology (unclear)
• Web-specific knowledge and skills

Some participants probably mentioned these particular topics because they play an important role

in their specific position. But one survey participant succinctly explained his reason for

including “in-depth courses in various application areas (graphics, database, AI, etc)” along with

a number of “computing foundations” in his survey response: “Philosophy: the degree program

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 170

should provide a broad introduction to many aspects of the field, along with in-depth study in

one or more advanced areas.” (s37)

4.6.4.3 Instructional foundations

As was the case with computing foundations, many individuals (9) generically

recommended “ID intro courses” or “ID theory.” A fair number also recommended courses

relating to educational psychology or learning theory (8). Other related topics mentioned by

individuals or a small number of participants included:

o Assessment and measurement
o Create educational objectives
o Critical analysis of instructional media
o Design for different environments
o Evolution of instructional technology
o Formative and Summative evaluation of software
o How to get requirements from students (specifically)
o Instructional media and strategies
o Learn to identify subject-matter patterns
o Learning goals analysis
o Learning Object reuse
o Provide a rationale for practical decisions
o What learned in ed transfers to SD

However, fewer responses related to instructional and educational skills than to technical

skills. One possible explanation may be explained by the response of one survey participant:

“To build programs, students don't really need a prescribed curriculum. I believe if they want to

become specialists, then completing coursework in Computing in Education / Ed Tech, etc.

would be beneficial” (s67).

4.6.4.4 Education specialty areas

A few participants mentioned other specific specialty areas within the realm of education,

including:

• Educational Administration

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 171

• Adult education
• Simulation design
• Domain-specific teaching skills (“Maybe a year on skills and processes for teaching

maths” (s17))

4.6.4.5 UI

Interface Design or Human-computer interface design were also frequently mentioned

skills. Other related skills mentioned included usability, user testing, user profiling, and visual

design. One interviewee who had taken a degree in this area indicated it was “absolutely” useful

to him. He explained that this background included “a lot of prototyping and going through the

process of user testing and user profiling, um…imagining, creating scenarios, and imagining

users... people who might actually use the product and defining what those are specifically…”

(I2). One survey participant had perhaps had poor experiences with classes in this area, and

warned that “Classes on user interface design [to be taught] by someone who knows what

they're talking about--failing that, just have students take some industrial design courses.” (s40)

4.6.4.6 Other important foci or courses

Other specific foci or courses recommended include:

• Art and Visual Design
• Business and Finances
• Design theory (specifically mentioned)
• English (general)
• Experiential Analysis and Planning
• Foreign language
• Game development
• Human Performance
• Intellectual Property Law
• Knowledge Elicitation (not sure what this means)
• Marketing, Market research
• Math
• Philosophy and logic
• Project Management

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 172

• Social Sciences
• Understanding of Research

Recommendations for social sciences often referred to the importance of these types of

courses in developing “people skills”. Interviewees who mentioned this area typically indicated

that a variety of different courses may fill this role. Specific social science areas recommended

included anthropology, psychology, sociology, and generally “how people think”.

4.6.4.7 Practical experiences

One of the most heavily discussed areas were practical and realistic experiences, which

were generally described as being extremely important to developing a students’ ability to

succeed in the field.

4.6.4.7.1 To be learned from practical experiences

Several discussed the importance of having a good balance between theory and practice.

“Program should encompass a mix of theory and practical application” (s51). Others called for

less theory and more practice. One participant discussed how theory she learned in a degree

program she is currently enrolled in already has impacted her real-world job practice. Others

explained that practical experiences are important in providing a context for applying theoretical

principles, and helping them see how the various things learned all relate to one another.

Participants indicated that many important skills can be best learned through practical

experience. These include how to work as a team, including practice in the necessary

communication skills, group dynamics, and how to work well together. Specific lessons include

learning to identify others’ strengths and learning to collaborate electronically. Other practical

experiences include gaining experience with working with users and clients, the difficulties that

occur in real-world settings, and the ability to scope, prioritize, plan, and manage a real project

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 173

from end-to-end. A few discussed topics relating specifically to instructional software, including

instructional design practice and the need to balance educational and technical requirements.

Many programming skills and testing practices could be best learned and practiced

through realistic projects and other real-world experiences. This includes the ability to write

maintainable software, and to maintain it over time – a topic that participants found is rarely

covered in past or current programs. Other specific skills technical include bottom-up

development, requirements gathering, and documentation. Participants indicated a lack of

experience with specific practical tools and methods in their own educational experiences, and

recommended incorporation of topics including build process, continuous integration, practice

with IDEs or SDEs, release management, and version control.

Higher-level lessons include knowing what is possible, learning to multitask, and

understanding what you will actually do with the degree once you graduate. As one interviewee

explained, “think too many times students enter into a program not really knowing what they are

going to be exposed to and what they could do with this training. (I know I was one of those

students and somehow lucked out with the right choices. Others are not so lucky!)” (s73

interview). It is important for students to experience the complexity and difficulty of realistic

experiences.

An ideal program would bring existing large-scale real-world applications and

infrastructures into the curriculum. Current traditional college degrees have a

tendency to teach students how to ride a tricycle. This doesn't teach them how to

work on a busted jalopy rigged with a car bomb. (S66)

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 174

4.6.4.7.2 Projects

Projects were a frequently mentioned type of practical experience. Projects can vary in

size and complexity. “Instruction and early labs may begin with simulated problems and clients

but should eventually include both individual and group real-world projects with real clients”

(S74 interview). The fundamentals do not necessarily have to be mastered before beginning the

use of projects. As one interviewee explains,

It depends on the problems on the problem you give them. A person could be

learning to program for the very first time, and you can still give them projects

that are within the scope or completion. You just have to be careful what you ask

of them. I mean, you can’t really throw out a problem to someone that involves

complex database solutions if you haven’t taught them the concepts behind a

database yet. (I 7)

Working on a project for an actual client also allows students to gain experience with

complexities that would probably not occur in an artificially created project. Working on such a

project can be very motivating.

I did a Computer Science course that had lots of practical content. In the final

year I had to write from scratch a system that the careers department used. It was

partly a knowledge based system that took the know-how of the careers people

and encapsulated it into a set of rules. It was designed to save them a lot of the

drudgery surrounding allocating interviews and if possible sort out some of the

more intractable interview slot issues. This is the first program that I had ever

worked on that needed lots of input from a non-programmer and quite of lot of

thought to come up with algorithms that worked. It did work and worked much

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 175

better than was expected. It only failed in about 5% of cases and saved the

careers department a lot of time. It is the success of this that first made me think

that I could solve any problem put in front of me. (S56 interview)

 Other participants emphasized the value of team projects. One interviewee mentioned

that although she prefers to work on her own, she learned a lot from working on a project with a

remote team.

Learning to work in teams online was a whole different experience that has

allowed me to expand how I address collaborative assignments electronically. It is

a different kind of beast and one that many need to learn. The complaints are the

same but the challenges are different. Identifying each other's strengths is vital to

the success of any course and/or organization. This is where one learns who can

be trusted, who will be able to meet the requirements and where things may have

to be shifted. As this is a life skill that everyone needs, this is truly impressed

during the online educational experience. (s73 interview)

 Another interviewee discussed the advantages of having different aspects emphasized in

different projects.

There are advantages and values in different kinds of projects where you tackle

the job yourself, versus two-man versus a small team. Because, in a small group,

you need to learn group dynamics, splitting up problems and coordinating results,

and communication. In a two-man project, it’s much easier to just split things and

then one person goes charging off and you go charging off and you just put it

together. Communication isn’t as important in a two-man project as it is in a

multi-man project. (I 7)

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 176

And then in a one-man project, because you are doing everything yourself, you

have a lot more flexibility and control over the order in which you do things, and

how you tackle the problem, and that is very educational in and of itself. Because

in a lot of situations, you will be called upon to manage an entire project by

yourself, from start to finish. You have to know all aspects of the SD process.

You have to understand how to collect those requirements, and understand them

and refine them, be able to take those requirements and build a design from them,

and then from there go into to the actual development of the software [which must

be done] in a modularized, maintainable type of way, the skills of actually writing

software, and then going about testing the results at the other end, and potentially

even communicating the results back to your client, your teacher, or whatever.

So, there’s is a lot to it. (I 7)

Another aspect of real-world problems is the pressure to accomplish goals. One

recommendation is to include competitive projects as well. “I would recommend competing

groups against each other…Because… in the real world you get a lot of pressure to get things

done, and that will simulate the sort of pressures you will find when you hit the first job.” (I1)

Only one participant brought up the difficulties of organizing such projects. “[Real-world

projects and experiences are] helpful, not always possible because of costs of tools; better to

learn in an internship” (S43 interview)

4.6.4.7.3 Other types of practical and real-world experiences

The most commonly mentioned experience after projects are internships, which give

students real-world experiences. One participant mentioned that the internship or work

experience should be in multiple areas (S60).

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 177

Integrating experience realistic examples is also important. This can include the use of

cases and critique of existing software. Examples and assignments should be large-scale and

realistic. “Have one (or more) large examples that are used throughout the different courses

instead of many tiny 'schoolish' examples” (S39). Examples and project should include

experience “in real domains across a number of different target audiences” (s51). It should also

include use of tools used in real-world software development (such as those described in the

previous section).

Access to real subject matter experts is also a valuable experience. “They would provide

clarification for questions arising from the ID’s research on the topic and suggest other

references” (S74 interview).

Other types of experiences suggested include:

• Access to real world software development shops
• Budgeting exercise
• Cases
• Capstone
• Labs
• Mentorship
• Portfolio
• Simulations
• Students present or publish their own work
• Student-choice exercises
• Studio-like development courses

4.6.5 Program traits

Participants indicated that it is important for programs to be flexible.

People are different. There are people who can tackle pretty substantial projects

in the course of one semester and accomplish meaningful results, whereas there

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 178

are other people who need more time with the fundamentals of the problem, rather

than the details of the polish and the things like that. (I7)

One way to add flexibility to a program is to allow specialization.

A number of participants discussed the value of having cross-disciplinary programs. As

one explained, “Education encompasses many areas and this needs to be reflected in the degree.

The social sciences, instructional design, computing (heavy in problem solving), and usability

should all be covered” (S23). Another suggested that the designer of an ideal program should

“understand the need for cross disciplinary/faculty approach. Consultation in the development of

educational based resources. Appreciation of the different requirements in the different

disciplines” (S64).

One participant indicated that the degree should be “managed collaboratively by CS

departments and software industry managers” (S10). Another recommended experiences to help

students learn how the education industry works. Finally, one indicated that current programs

are not very useful for some students.

[A degree with programming or other technical focus] is extremely important for

a majority of software developers, but a good ratio have intrinsic passion and

drive that motivates them to become highly skilled in programming languages and

other technical aspects of software design/development. Formal training tends to

aim well below the skill level of these people. (S66)

4.6.6 Issues with question

4.6.6.1 Need for a Master’s degree?

Several participants were surprised that the question was aimed at a Bachelor’s degree. I

had the opportunity to interview one of the survey participants who initially responded “Strange

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 179

question since almost everyone in this field [instructional design] has at least an MA” (S 43).

Interestingly, in our follow up discussion she became enthusiastic about the idea of a Bachelor’s

degree in Instructional Design.

I emphatically do not believe a graduate level degree is required – yet am not

aware of undergraduate programs. It’s something I’m very interested in

promoting – we need more instructional designers and I think we could do a good

job of preparing people at the undergraduate level. This is especially important

since employers don’t want to pay what a person with an MA expects to earn.

There are some certificate programs out there and I think they represent a good

compromise for the time being. (S43 interview)

One participant included description of both a general Bachelor’s degree which would

provide foundational skills, and a masters degree which would actually prepare students for a

job.

lots of general education to provide a broad framework for learning to think. I

really think that the bachelor's degree should be very broad and then the person

moves to an Masters to actually get the skills for the job. The bachelor's degree is

about learning to think critically, problem solve and learn to interact with a

diversity of people in teams. The Masters is about the JOB. (S68)

Echoing this sentiment, one interviewee suggested a model similar to law school, in

which students could pursue an undergraduate degree in a numver of differnet areas which could

“expose [them] to important principles that are going to be key to an aspect of instructional

design work”. This would be followed by specialization in instructional design or a related field

at the graduate level.

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 180

Once you get to graduate school, I think you need a degree in instructional design

or learning sciences, or at least a certification, to accompany, for example, a

computer science degree or media production degree. I think by then, you need to

learn about instructional design. (I 9)

4.6.6.2 Other issues with the question

Two survey participants indicated they had an issue with the set of questions relating to

the development of “an ideal bachelors program”. They indicated that the question itself did not

make sense or was useless because the goal was not sufficiently clear. “There is no ideal

program in the absence of a specific set of goals.” (S32).

As over a third of the participants who reached this question (30 of 74) did not opt to

respond to the open-ended portion of it, I do not know whether others found the question

annoying or difficult to answer. By this point in the processes they may have already completed

a large number of questions and may have simply not wished to take the time to type in a

response to an open-ended question.

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 181

5 Discussion

5.1 Backgrounds: Multiple paths

The findings of this study indicate that people working in the area of educational software

design come from a variety of backgrounds, which include multiple formal educational paths and

a wide variety of life experiences. The findings suggest that people from all backgrounds can and

do take on the entire spectrum of roles included in my definition of an “educational software

designer”, although some roles are more likely to be played by some people than others.

It is not surprising that those with a background in Computing are somewhat more likely

to play technical roles, especially hands-on roles such as programming and database design.

However, it is somewhat surprising that the most extreme differences seen are in the roles of

software architect and technical requirements gathering/generation. This may be because these

roles are usually played by very experienced software designers. The only statistically

significant difference between groups on the high-level design and low-level design roles is

between those with a background in Computing and those with a background in neither area. I

cannot explain this finding; since these are quite technical roles; I would have expected that

those with a background in Computing would be much more likely to play this role than those

with a background in ID/education only. A comment from one of the participants when

reviewing this section as part of member checking would appear to confirm my feeling. As he

explained:

I can tell you why high-level design is done by those with a background in

Computing: It is all to do with what managers expect these roles to have and they

expect them to have a degree and for it to have been in Computing. It is only

after many years of experience that someone can dismiss what degree they have

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 182

and just point a manager at their body of experience on their CV. If you do not

have a degree in computing you will not even get an interview for many jobs and

if you do it is because your CV has 15+ years of experience showing that you are

able to do the job. (S56, member checking)

It is possible that those with a background in instructional design may have interpreted “high-

level design” as being related to the instructional design rather than the developer-level design.

It is interesting to note that there is no statistically significant difference between groups

in the area of web design and development. This may indicate that this is either easier to pick up

than other types of development skills (which is certainly suggested by interviewees, as they

describe “front-end” or “web” development as being less technical or difficult than “back-end

programming”). However, these are also areas that are included in the IBSTPI standards for

Instructional Design (Richey, et al., 2001). It could be this is truly a cross-over area between the

two main formal educational paths discussed. Unfortunately the term “web development/design”

is somewhat broad, as it might include activities such as designing in Adobe® Dreamweaver® or

other tools which provide a lot of assistance in the more technical aspects of web development,

but may also include complex Javascript, Java applet development, CGI programming, and so

on.

What is perhaps more interesting is that the area of user experience design is nearly

identical across all four groups. Fifty-three percent of all participants indicate that user

experience design is a part of their job, which makes it the most common role of all of those

included. Only a minority of participants indicate that this topic was well covered in their formal

education, indicating that many who play this role may be partially or completely self-taught.

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 183

Another surprising finding is the lack of significant differences between those with a

background in Instructional Design and those who have a background in both fields or in neither

field. What might this mean? Although “ID/Ed” and “Both” are the smallest of the groups

(consisting of 13 and 12 participants respectively), the statistical procedures employed should be

sound with this number of participants (Chi-square requires at least 5 subjects in each cell and

there were more than 5 in each cell in all cases). Those who had taken courses in both areas and

those who had taken courses in neither area were exactly as likely as each other to have a

programming role and were very similar in their response to the database design role. This leads

me to wonder exactly what is being learned by those who have some experience in both areas. If

those who have had educational experience in both areas do not differ from those who have not

had any experience in either area with regards to very technical responsibilities, perhaps many of

those who had taken some courses in “both” have focused primarily on Instructional Design,

with just a few Computing courses.

Overall, it appears that people with any educational background may play any of a range

of software design roles. One thing this type of study is not able to show is the quality or

complexity of the software being designed and developed by participants. Therefore, I cannot

determine whether roles are played equally well by participants across all backgrounds. It is also

possible that although people from all groups indicate they are involved in “programming”, the

depth or complexity of the code they write may vary depending on the need of the specific

project. For example, those without a technical background may rely on others in the team to do

more complex programming, or may be more likely to build software on top of a platform which

abstracts away some of the complexity of programming, allowing them to focus primarily on the

user interface and instructional elements of the design. Conversely, those with a background in

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 184

software design may rely on those with instructional design or educational backgrounds in large

teams, even if they play some part in the instructional design-related decisions. Software created

by individuals with a software design background who start their own company may not require

a lot of domain-specific knowledge, as one interviewee explained while describing the

knowledge he needed in order to build lecture-capture software. Or, they may focus on a narrow

area of their own expertise, as did the interviewee who wrote software focused on classical

languages. However, other interviewees were clearly comfortable developing education-related

software based on their own personal experience rather than a formal education in instructional

design.

5.2 Instructional Design Education and Preparation for Management

Instructional design and management are not considered software design roles based on

my definition, but were included because interview findings indicated that software designers in

this particular field are likely to play these roles as well. It is not at all surprising that those with

an educational background in instructional design are more likely to play an instructional design

role than those without it. Interview findings indicate that instructional designers who work in

software design may still have a primarily instructional design-related position, with additional

responsibilities that fall into the area of software design, often those related to design rather than

implementation. It is however worth noting that many of those who do not have any education

in instructional design currently have instructional design-related roles or have previously done

this type of work, indicating that a formal education is not required to function in this area.

The literature and standards would seem to assume that instructional designers will be

managing projects related to instructional materials, including the development of educational

software. However, the only statistically significant difference between the groups relating to

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 185

the supervisory role is between those who have experience in neither area and those with a

background in Computing – a 40% difference! A glance at the numbers shows that those with a

background in neither area are also more than 10% more likely to be supervisors than those with

a background in instructional design and more than 20% more likely to be supervisors than those

with a background in both areas. I cannot immediately explain this with the available data,

though it may be that those who come from outside rose to a supervisory role because of their

content expertise or because of other aspects of their background (e.g. an MBA degree). Several

interviewees who came from unrelated fields entered this industry by inventing a new product

and starting their own business. However, among survey participants with no educational

background in either field, only three have what I consider executive positions, and none work in

very small companies (15% work in companies with 6-20 employees, 15% in companies with

21-99 employees, and the majority, 62%, work in organizations with 500 or more employees).

Three are faculty members.

These findings would seem to contradict the notion that projects involving instructional

design (such as educational software design) will be managed by instructional designers. In fact,

the instructional designer may be one expert among many in a team managed by someone from a

background in another area of expertise, or someone with no background in any design field at

all. Participants who have management experience discuss the importance of bringing together

expertise from a variety of areas and of understanding the unique aspects of each of these areas –

including visual design, video production, and other specialized fields, as well as software design

and instructional design.

There are a number of issues with assuming that students will generally supervise

projects after graduating from a particular program. An obvious issue is that entry-level

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 186

positions generally do not include direct supervisory responsibilities, which may lead to surprise

and disappointment on the part of new graduates. A design and development team will inevitably

have to make trade-offs in design decisions based on concerns and constraints at many different

levels, and the responsibility for making these tradeoffs may not be in the hands of the

instructional designer. Rather, supervisors, project managers, or the group as a whole may make

these decisions. This is not to say that project management skills are not important to learn.

Participants in this study clearly indicated that these skills are in fact crucial on the job. Project

management skills are important at many different levels; each individual on a team must be able

to understand how to budget time and resources, and be open to understanding the impacts of

time and budget constraints of other aspects of the project on their own design work.

Another potential issue for those who do end up in management is the lack of awareness

of the amount of design effort that goes in to other elements of a project, and how design

constraints outside of those directly related to instruction may influence the overall design of a

product. Unlike in class projects, in which instructional design students often work in a group

with peers who are also preparing to become instructional designers, new graduates will need to

work together with colleagues from a multitude of backgrounds. An assumption that a

background in instructional design with a course or two in web design or media development is

sufficient to understand all aspects of what goes into a software development project can lead to

false assumptions and frustrations on all sides. For example, certain types of features may be

more difficult to develop on some platforms than others, so if a software design team is limited

to use of a particular platform, some options that would seem desirable from an instructional

point of view may be difficult or impossible to incorporate into a product built on that platform.

Switching to a different platform could result in a complete rework of the software design and

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 187

recoding of the entire product. This may not be apparent to someone without the relevant

expertise.

It is also not helpful to assume that ADDIE or another instructional design model will or

can guide an entire design and development project. In fact, software designers must go through

their own extended design process to produce high quality software, including developing

software architecture, detailed technical requirements, and often high- and low-level design

documents before coding begins. These are the precise roles that participants of this study with

an instructional designer education were least likely to play or have experience in! Similarly,

testing practices in software design cover different types of issues than those learned in

instructional design – and both are crucial to developing a high quality product. Testing is an

area often under-appreciated and not sufficiently budgeted for, making it even more crucial for

professionals to understand the varieties of types of testing and the importance of each. It is

likely that similar gaps exist between the preparation of instructional designers and an

understanding of other specialty areas such as graphic design, videography, etc.

Those with a background in Computing should be similarly cautious about making

uninformed instructional design decisions within software they are developing. Software

designers are often cautioned to ensure that a piece of software be designed with the intended

user in mind, rather than designing what the software designer himself would like to use. Study

participants indicate that this concern is especially crucial in designing educational software.

Having attended school does not necessarily make one an expert in education. Nor is reading

about educational psychology necessarily sufficient to make sound instructional design

decisions. The types of testing taught as part of software engineering or even interface design

related courses may be sufficient to determine whether users can successfully move through a

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 188

piece of software, but do not verify whether a user has actually gained useful and transferable

skills and knowledge from a program intended to be educational.

5.3 Interpreting the Gaps and implications for degree programs

As Walker (2010) points out, not everything can be included in a four year curriculum.

Walker recommends that curriculum designers set priorities in order to assemble a realistic list of

core topics and then allow students to specialize. Walker also stresses that a curriculum must

provide “a foundation for long-term study, professional involvement, and productivity” (p. 21).

Participants in this study indicate – not only by their own opinions and suggestions, but also by

the demographics of the group as a whole – that there are multiple possible paths to a career in

educational software design. Participants’ near-universal emphasis on the importance of critical

thinking, problem solving, and the ability to learn on one’s own would seem to back up the

importance of developing the types of skills needed to provide just such a foundation.

The overarching message conveyed by the comparisons between what is important on the

job and what has been covered by participants’ previous formal education is that software

designers do not get all of the skills and knowledge they need to succeed in their careers from

their formal educational experiences – regardless of the degrees held. There are two possible

explanations for this. Clearly, not everything needed on the job was learned as part of a formal

degree program, which could indicate troublesome gaps in degree program curricula. However,

findings from this study indicate that non-formal, self-learning experiences are a normal part of

software designers’ lives, as would be expected based on Continued Professional Education

literature (Daley, 2000; Driscoll, 2000; Knox, 2006). Certainly software designers, like other

professionals, continue to develop expertise once they are on the job (Cross, 2004).

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 189

5.3.1 Implications for existing degree programs

An important question for existing Computing and Instructional Design programs to ask

is, what really needs to be included in formal educational programs, and what can be left for

practitioners to learn on their own? Investigating the gaps between what is important on the job

and what was learned as part of participants’ own formal educational experiences, together with

a detailed analysis of recommendations for an ideal degree program, has pointed out some areas

which appear to be good candidates for emphasis in degree programs.

Statements from participants of this study would seem to imply that critical thinking and

the ability to communicate well and learn on one’s own are a crucial basis for beginning a career

in this field. Although participants request more focus on practical skills, the skills they ask for

are often at a high level: “experience with a full lifecycle of a project”; “experience maintaining

software”; “experience with version control”. Again, rather than focusing on a specific

technology or content area, participants appear to be suggesting broader experience with real-

world applications which they can build upon once they enter the workforce.

This is not to say that there is no place for theory – many participants recommended

theoretical “basics” in both Computer Science and Instructional design. These findings mirror

those in an earlier study of software designers working across industries, in which participants

strongly recommended a foundation in “the theoretical basics” of Computer Science and related

areas, followed by multiple intensive realistic practical experiences (Exter & Turnage, 2011).

However, the current study reflects a more complex set of recommendations by practitioners

whose own backgrounds and roles played varied widely.

The importance of covering Instructional Design and Computing foundations in an ideal

degree program varied across participants, though participants were likely to recommend

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 190

backgrounds similar to their own. One surprising finding was the emphasis put on Human-

computer interaction design and User experience design, which may be alternative educational

paths in their own right as well as areas that may be included in either a Computing or

Instructional Design degree.

It is interesting to note that participants’ recommendations align with a lot of the

recommendations in the variety of Computing- and ID-related standards. Participants’ concerns

also match the industry concerns mentioned in the IEEE/ACM Joint Taskforce’s Computing

2008 standards very well (ACM and IEEE Computer Society, 2008), as well as the justifications

for changes made in the IBSTPI competencies (Richey, et al., 2001). For example, the

IEEE/ACM Task Force’s Computer Science curriculum standards include a set of “transferable

skills” such as communication, teamwork, self-management of one’s own learning, and

professional development. These are similar to IBSTPI’s “Professional Foundations”, which

include reference to effective communication and the need to update and improve one’s skills,

knowledge, and attitudes and the “Implementation and Management” skills, including the ability

to plan and manage projects, and promote collaboration (Richey, et al., 2001). Both of these

would seem to address participants’ concerns about the need to develop communication and

team-work skills, as well as preparing students for self-learning and project management related

tasks. The IEEE/ACM Task Force’s standards, like the other Computing-related standards

discussed in the literature review, clearly cover the “computing foundations”, and the IBSTPI

standards likewise cover the areas that are referred to in the findings section as “instructional

foundations”. All documents reviewed either allude to or directly address the importance of the

development of practical skills.

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 191

If all of this is true, why are participants in this study, along with others mentioned in the

literature review, still demanding that these changes be made? Although the majority of my

participants did not recently complete an undergraduate program, many of their comments

revealed concerns they have about recent graduates. I had hoped to learn more about the state of

current programs during phase 3 interviews with recent graduates, but unfortunately few survey

participants responded to my request for follow-up interviews. Three of the four who responded

are currently enrolled in formal education programs, but each of them is a PhD student.

Although they discuss “real world projects” and others topics I am interested in, the projects

mentioned were generally research related (although at least one participant’s research involved

design and development work).

Difficulties in implementing the types of changes in curriculum necessary to provide

more real-world or practical experiences may have many sources. Faculty members who have

not recently worked in industry or who may never have worked in industry may not have direct

experience to provide them with the context that makes it so clear to others why this type of

teaching is so valuable. They may prefer to teach in the way they were taught, or may fear giving

up too much class time that could be used to teach theory and cover the wide range of required

standards.

Many current faculty may indeed strive to integrate practical experiences into coursework

through team projects, but these projects may be, in the words of one survey participant, the

equivalent to teaching students to ride a tricycle, when what they will really need to do in the

work world is “work on a busted jalopy rigged with a car bomb” (S66). There may be structural

difficulties in implementing the types of changes recommended by my participants, which

require complex projects that would ideally continue for longer than the duration of a semester.

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 192

Goals like “maintaining a large body of code over time” cannot be realistically fostered by the

typical model of 2-4 class projects throughout a semester. Standards do not indicate how multi-

semester or multi-year projects can be achieved in a traditional higher-education setting.

In a recent conversation on this topic, Dean Schnabel (Dean of the School of Informatics

and Computing at Indiana University and Professor of Computer Science and Informatics)

mentioned two practical concerns that would make cross-course, multi-year projects difficult to

implement (R. B. Schnabel, personal communication, June 22, 2011). In order to provide a

multi-year project, students would need to remain in a cohort across years. This type of cohort

program is difficult to organize because undergraduate students frequently transfer in or out of a

program, study abroad, or structure their courses around work obligations. Dr. Schnabel also

noted that Universities should admit to some limitations in the current system; because

faculty members are very autonomous and students take individual courses from a variety of

faculty members throughout the program, it would be difficult to coordinate such that a single

project could be pushed through multiple courses over time.

Attending a conference on Computer Science Education (ACM SIGCSE’s annual

conference) allowed me to attend sessions and have informal conversations with faculty

members who strive to use just these types of techniques in their own courses. Some of the best

examples of complex, lengthy, real-world projects seemed to come from faculty of small, liberal

arts colleges. These faculty members enthusiastically recounted their student’s responses to

these experiences, and discussed what they would do differently in future projects. Similar

presentations from faculty from large research universities were often presented in a more

research-like format. This led me to wonder whether these faculty members could keep up their

initiatives when they no longer “count” as research projects. Faculty members from large

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 193

universities also discussed the challenges in providing these types of activities to large classes of

undergraduate students. While university programs may be better able to provide such

experiences to their smaller groups of Masters students, findings from this and other studies, as

well as guidance from the standards, clearly points out the importance of these experiences for

undergraduate students.

One example of a program which was able to offer a more extensive experience as part of

an undergraduate degree is discussed by Nurkalla and Brandle (2011), who presented a

curriculum model for teaching software engineering through a 4-semester long “Software

Studio” sequence. Within this sequence, students take four credit hours in each of four

consecutive semesters, including a weekly seminar, readings and related online discussions,

classroom lab time, and an expectation for an additional eight hours per week spent on team

project work. Students are required to work together within their teams, create high-quality

code, log their work, and present what they have learned in both written form and in formal

presentations. Students are exposed to experiences in working with real customers, maintaining

code over time, and in playing a variety of roles as they gain additional responsibility across the

four-semester period. One caveat to note: not all computing students at this institution take this

course. Students who wish to participate in the “Software Studio” track must request permission

from the instructor, who interviews students to determine whether they “are self-starters who

demonstrate the ability to perform well without constant oversight” (p. 154). These students must

also have sufficient “software development experience, performance in other classes, and…

personal maturity” to indicate potential success in this type of environment (p. 154).

In discussions with some of the SIGCSE members who have worked hard to incorporate

substantive projects and other real-world experiences into their curriculum, I learned that they

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 194

work closely with industry partners, actively implementing changes recommended by a board of

advisers from industry on a frequent basis. Having strong and positive ties with industry partners

can provide another important advantage: access to internships and/or the ability to work with

organizations to develop projects for students to tackle as part of coursework. Developing a

report with a “client” and working together to design a project that is feasible for students to

accomplish in a set time-frame while still presenting realistic challenges can be difficult, and

maintaining ongoing partnerships with organizations that have an interest in fostering students in

a particular college program could be a real asset.

Based on experiences with developing an informatics capstone project course, Dr. Dennis

Groth (who organized an Informatics Capstone course at Indiana University for over ten years

and has written about this experience) found that students were also very motivated to work on

projects developed for industry partners, and that the industry partners found work on such

projects to be a good indicator of students’ future performance (Groth & Hottlel, 2006; D. P.

Groth, personal communication, July 6, 2011). The design of this two-semester-long capstone

course allows for formal lectures on process-related topics that are common to all projects, but

also relies on students to pursue just-in-time learning related to their individual projects,

providing another valuable real-world experience.

Wolz, Cassel, Way, and Pearson (2011) suggest another resource that should not be

ignored: faculty and students in other disciplines. Their model of “cooperative expertise”

involves a partnership between multiple instructors, each leading his or her own course, during

which students cooperate towards a common goal. This model allows instructors to overcome the

constraints of teaching in a field with a broad range of areas of expertise. It also enables them to

provide an authentic experience with designing and developing large-scale projects. Students

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 195

have the opportunity to develop their soft-skills in ways that cannot be accomplished when only

working with other students with a similar background. In the example discussed in Wolz et al,

three courses were integrated across two institutions: a software engineering course for

Computer Science majors; a multidisciplinary video game course aimed at Media and CS

majors; and an interactive storytelling course for Media majors. These courses were each taught

by a separate instructor, and each had its own syllabus, allowing the instructors to meet

institutional requirements within their own courses and course syllabi. The faculty members tied

the courses together by tailoring course objectives and goals to the cooperative agenda and by

planning a schedule of deliverables for each student group. As in a real-life project setting, each

student group was dependent on deliverables from the other groups to meet their own schedule.

The authors indicated that this program met many of their goals and recommended this technique

to allow universities to provide realistic collaborative experiences. The students from the

Computer Science program appear to have benefitted the most from this cooperation, possibly

because those in the partner classes were already engaged in multidisciplinary programs.

The EPICS model, developed at Purdue University and later replicated at a number of

other institutions, uses a service-learning model which allows students to participate in large-

scale, multi-year, interdisciplinary real-world projects in aid of a non-profit institution or cause

(Coyle, Jamieson & Oakes, 2005). Within this model, community partners are carefully selected

to ensure that a proposed project will be supported by the partner throughout the project’s

lifecycle. The project should also significantly benefit to the community. Finally, it should pose a

challenging but reasonable task which is of an appropriate scope (that is, it must require a design

and development life-cycle which will span multiple semesters).

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 196

After the project has been established, a cross-disciplinary project team is formed

(including students from multiple engineering disciplines as well as students from non-

engineering disciplines, potentially including a range of topics spanning from the social sciences

and education to such diverse fields as English, nursing, visual design, forestry and natural

resources, chemistry, and management). These teams are “vertically integrated” by mixing

freshmen, sophomores, juniors, and seniors, allowing the more advanced students to spearhead

the project while the more junior members will be around to continue the project into future

semesters. This allows projects to continue for multiple years, as new students continue to be

recruited. Student teams spend the first semester meeting with a project partner to define the

project and develop a project proposal. In subsequent semesters, the team will develop a

prototype system to present to the project partner and revise as necessary. Development

continues for multiple semesters, until a project is developed that meets the needs of the project

partner. Finally, the system is deployed, at which time the team provides training, collects

feedback, and make changes based on that feedback. Students are responsible for supporting and

maintaining the project through future semesters. Throughout this period, a faculty adviser and

TA meet weekly with the team to provide technical supervision. Institutional support is crucial

for building and maintaining an EPICS program. Based on a study of the program at Purdue,

The most critical elements in the success of an EPICS program are leadership of

the program by one or more faculty members and support by the appropriate

departmental and college administrators. This ensures that a high-quality design

and service learning experience will be provided to all EPICS students in courses

that are approved by the faculty. Beyond these essential elements, the level of

student enrollment in EPICS depends upon a combination of degree requirements

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 197

in different disciplines, available space, the number of potential faculty and

industry-based advisers, and the teaching credit that is offered for advising an

EPICS team. (p. 10).

The Purdue team found that finding sufficient partners in the community was not a

limiting factor, suggesting that contacts within the community, the university, and local

government agencies are all good sources for potential student projects. Therefore, institutional

resources and support were the deciding factors in making the EPICS program a success.

The last two examples describe projects not necessarily related to the area of educational

software. However, educational software development could clearly fit well into the types of

projects described by Wolz et al (2011) and Coyle, Jamieson, and Oakes (2005).

Finally, when designing a practical course, instructors can benefit from learning from the

signature pedagogies of other fields, as was suggested by Shulman (2005). In one example

relevant to the Computing field, Cennamo et al (2011) made recommendations for a potential

Computer Science studio based on an ethnographic study which compared student activities in

HCI studio courses to those of students in similar courses offered within fields with a long

history of studio education (Industrial Design and Architecture). The researchers found that

students in the HCI courses were less likely than their counterparts in the other design fields to

come up with truly original ideas, consider fully the place of the user’s experience, or use low-

fidelity prototypes or other techniques to overcome limitations in their ability to work with or

test an initial design. The authors indicated that one major difference between the courses was

the amount of class time spent engaged in studio activities. The three HCI courses studied

include two semester-long courses which met formally for 37 hours each, and a quarter-long

course that met for 27 hours. In comparison, both the Industrial Design and Architecture courses

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 198

included four-hour blocks of studio time three times a week throughout the semester, as well as

providing studio space accessible to students 24 hours a day, seven days a week. The authors

indicated that the “severe time constraints” were a limiting factor for the HCI courses, but they

also recommended a number of changes that appeared to help HCI students in subsequent

semesters move further into developing more original ideas, through an emphasis on

experimentation and idea refinement. This included the use of low-fidelity paper or white-board

based prototypes, and having students put themselves into the role of the user to experience their

own design from an alternative viewpoint. They further recommended requiring students to

generate a number of designs before settling on a specific solution. In order to facilitate this, the

authors suggested that computer science instructors separate design from implementation, by not

requiring that all or most designs be implemented. The authors stressed that this approach could

be taken at all levels of computer science instruction - when designing algorithms, programs, or

specifications, as well as when designing an interface.

Although these examples focus on Computer Science education, the complexities and

challenges of providing realistic projects and other experiences in Instructional Design programs

are likely very similar.

5.3.2 Ideal program for educational software designers

The above discussion does not answer the higher level question asked of participants

regarding an “ideal” program: what type of degree should be offered to students planning to

work in this field (or what type of degree should they pursue)? The support for some sort of

hybrid program was surprising to an external reviewer of my data, who had expected that

participants with a Computing background would suggest a degree in Computer Science or

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 199

Software Engineering, and those with a background in Instructional Design would recommend a

degree in Instructional Deign (see Appendix D: Notes from external review of coding).

However, there are several concerns with this idea. Is it practical? As one participant

pointed out, “I don’t think it is realistic for any institution to offer some sort of hybrid thing.

Cause, the market is too small for something like that” (I4). Results of this study are not

sufficient to determine whether this participant is correct about the size of the likely market, but

this might be a topic worth pursuing.

Another participant illuminated an even more basic concern when responding to a

question about the importance of a specific trait of the program: “Important for what? For my

own job? Yes. For all possible jobs in a development team? No.” (S36). This clarifies an issue

with the questions asked; although I would like to find out what an ideal program would be like

for what I call educational software designers, the question specifically asked what would be

ideal to prepare someone “for your current position”. I cannot be sure how others interpreted the

question but some aspects of participants responses seemed closely tied to people’s specific roles

or products (e.g. focus on game design, etc), while others were clearly more general. Perhaps

this points out yet another set of questions. Should people be getting role-specific as well as

domain-specific education? Clearly people move between roles and frequently play multiple

roles, and over time they may work in a variety of contexts and domains. Also, if those with

backgrounds in “neither” can do the same things as those with multiple degrees in one or both

areas, what does that say?

One issue with creating very specialized degrees is that professionals often move from

one area to another, bringing their skills and unique perspectives with them. Over-specialization

may hinder this type of movement, especially if employers begin to narrow their expectations in

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 200

hiring. There appears to be value in putting together a team with members who have both

education and experiences in a variety of areas. This realization argues for caution in assuming

that employees need a very specific, specialized degree to serve in a particular role. This view

does not necessarily undermine the importance of degrees in Computing or Instructional Design

related fields – rather, it points out the benefit of having individuals with expertise in each of

these areas, as well as individuals with expertise in other specialty areas.

5.4 Role of experience and self-learning and implications for degree

programs

Regardless of the formal educational path followed, self-learning strategies such as

experimentation and learning from peers and online sources were seen as important. The high

importance given by all participants on the ability to work well in teams, communicate with

specialists in other areas, and perform many different roles speaks to the interactive and quickly

shifting nature of this work – providing further evidence of the need to continue learning and

growing throughout one’s career. The relatively low importance given to “knowledge of specific

programming languages” and “knowledge of web languages/technologies” by professionals who

certainly must have at least some programming skills further indicates the degree to which

participants feel that this type of knowledge can be picked up easily. This point, taken together

with a rating of “Very Important” given by over 90% of participants for the importance of

“Ability to Teach Myself”, would seem to indicate that self-learning is an expected aspect of a

job in this field, and something that formal educational programs should prepare students for.

As was mentioned earlier, participants’ attitudes towards self-learning activities are not

surprising, considering the literature on Continued Professional Education (Daley, 2000;

Driscoll, 2000; Knox, 2006). Participants expect to learn on the job, and generally learn on an as-

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 201

needed basis, in order to address their immediate, real-world problems. They also learn from

experience over time, developing as may be expected based on Cross (2004)’s description of the

typical development of expertise in design fields.

5.4.1 Possible implications for degree programs

Do the findings discussed here indicate that formal education is not really needed? After

all, if those without a related degree can hold similar positions as those who have an education in

the area and if experienced professionals indicate they regularly learn what they need on the job,

where is the need for a formal education?

In our conversation, Dean Schnabel at Indiana University responded that the purpose of a

university program is not to replicate what will be encountered on the job. Rather, a university

education should provide general growth, along with a breadth of understanding within a specific

field including more than what an individual would likely encounter on one particular job

(personal communication, June 22, 2011). In an email message sent later that day, Dean

Schnabel indicated that following our conversation, he discussed this topic with Dean Groth,

Associate Dean for Undergraduate Education and Associate Professor of Informatics and

Computing at Indiana University. Based on their conversation, Dean Schnabel wrote:

In a computer science or related degree students will not only learn programming

and project skills, and theoretical foundations, but also be exposed to a variety of

areas of computing, e.g. databases, artificial intelligence, operating systems,

networks, etc. I think the self-taught people are unlikely to have this breadth and

that may limit what they can do in the computing field (personal communication,

June 22).

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 202

Participants themselves did not, in general, indicate that post-secondary degrees were of

little use. However, participants’ suggestions did appear to indicate that the current structure of

professional programs is not optimal for what they perceive as the needs of graduates. Some of

the participants’ recommendations may seem to suggest the value of moving back towards a

more “liberal arts” model, with a focus on critical thinking, written and verbal communication

and a variety of courses that would give an appreciation and understanding of the human mind.

On the other hand, other requests, particularly those relating to the development of practical

skills and design judgment, would seem to recommend a model more similar to Schön’s

reflection-in-action model (Schon, 1987). Combining these two seemingly disparate models

may look similar to Brook’s suggestion to “sandwich” real work experiences (including

associated company training) between periods of academic education (Brooks, 2010).

There may be structural challenges in pursuing such a model. The standards themselves get in

the way of these types of changes – although they call for the skills that can be developed by

such structural changes to the curriculum, they also get in the way of any attempt to make them

by providing a list of very specific topics which must be covered, leaving programs uncertain

how they can make the time to provide more “general education” requirements or more

unstructured, project-based experiences. Furthermore, although this model would meet Dean

Schnabel’s goal of providing “general growth” in a student, it may mean that not every student

will be exposed to all areas of computing considered important by the standards or by educators

– depending on the nature of the “real-world experiences” encountered. For example, not all

real-world projects, even substantial ones, will include in-depth experience with “databases,

artificial intelligence, operating systems, networks,” and other areas considered essential to a

well-rounded background in Computer Science. Although these areas may not be found to be

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 203

crucial across the majority of participants in this study (and were generally relegated to the

“computing specialty areas” during coding based on the frequency and manner in which they

were discussed by participants), they were for the most part identified as highly important in an

earlier study I conducted with participants across a number of other industries (Exter & Turnage,

2011).

Doing away with semester boundaries altogether, which may be ideal for providing more

realistic experiences, would be impossible within most institutes of higher education. Even

changing the content of individual courses or course sequences may be difficult when a

department must contend with school-wide or university-wide policies. Unfortunately, as

discussed earlier, bringing changes in piece-meal, for example by introducing team projects into

individual courses, may not give the desired results. A reconceptualization of the purpose of

“education” may be necessary. As pointed out by Lifelong Learning literature, education may be

most useful in preparing adults to continue learning throughout their career, rather than in

attempting to prepare them for a very specific role.

Such dramatic changes cannot, of course, be recommended based on this study alone.

However, continuing to take a close look at these topics is one of the aims of my research

agenda.

5.4.2 Hypothetical Degree Program of the Future

Although the findings of this study are not on their own sufficient to argue for a

reorganization of university programs, they do imply the need to carefully consider whether the

current structure of university programs best meets students’ needs, and whether some

modifications to the structure would significantly benefit students. Based on the findings and the

literature as discussed in this section, I have three main recommendations. None of these are

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 204

radical, but I believe that a change to the way we think about organizing university programs and

issues such as faculty autonomy and the desire to cover both breadth and depth across a wide

range of topics would be necessary to fully implement them.

The recommendations fall into three main areas:

1. Incorporate significant, complex, coordinated real-world experiences as a major component

of the overall curriculum.

2. Include liberal arts courses which foster development of communication and critical thinking

skills, spread throughout the four-year timeline.

3. Make trade-offs to allow for sufficient time in the curriculum to allow for these changes.

Each of these items is discussed in greater detail in the sub-sections below. The details of

these recommendations are geared towards a Computing-related degree, but I believe that these

recommendations could be easily adapted for an IST degree. Based on both the literature and the

findings of this study, gaps in existing degree programs are similar – in type of experience if not

in specific content material.

5.4.2.1 Significant, complex, coordinated real-world experiences.

As was discussed in the previous section, many programs do offer real-world-like

experience through class projects and more comprehensive experiences through a 1- or 2-

semester capstone or senior project course. Internships are also a good way for students to gain

real-world experience. However, based on feedback from participants in this and earlier studies,

these experiences may not be sufficient to prepare students for many of the most important

aspects of their future jobs. Class projects tend to lack the scope and complexity of problems

seen in the real world, and even year-long capstone projects lack many of the key characteristics

of working in industry, including maintaining multiple versions of code over time, updating code

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 205

written by others, and working within a group with fluctuating membership and team members

with expertise in different areas.

However, the purpose of schooling is not to simply replicate the experiences one would

gain in the first year or two in the work world. Practical experiences should take place in a safe,

scaffolded environment that allows for failure and encourages learning from both failures and

successes. Experiences within such an environment should be crafted and scaffolded such that

students are encouraged to see the big picture, as well as gaining specific design and

development skills by working on individual components and gaining experience with parts of

theory that are not really relevant to smaller projects. They will also allow students hands-on

practice with topics that are not currently thought of as theoretical or discussed in great detail,

including various types of testing methods and techniques, change control, etc.

Such experiences can best be provided through a multi-year project in which students

must play different roles over time and must maintain designs and code created by others. This

does not necessarily mean that students must be in a “cohort”; rather, students can be brought

into the project at different points, with more senior students serving as team leads and mentors

for the less experienced students, thereby gaining experience with management practices (as

occurred in the multi-semester projects described by Nurkalla and Brandle (2011) and Coyle,

Jamieson and Oakes (2005)). If at all possible, the projects should be done for a real client and

within a real context.

These experiences would be set up in such a manner that students would be required to

learn on their own from peers, written and online resources, experimentation, and knowing when

to ask faculty mentor for help. However, the “safe” scaffolded environment would need to be

structured such that that faculty mentors are aware of student progress and able to step in and

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 206

encourages students to consider things or ask the right questions at the right time. This requires

active monitoring by faculty mentors who themselves have significant large-scale design and

development experience. If large class sizes provide difficulties, TAs can play part of this role.

However, it is important to recognize that TAs and upper classmen are not likely to have the

necessary rich experience across a range of content areas that may be required at various points

throughout the project. Therefore, experienced faculty members should remain involved in a

level that provides them enough details about what is going on that they will know when to step

in. Alternatively, volunteers currently working in or retired from positions in industry may be

willing to play a mentorship role.

Although teamwork is important in providing a foundation for future work and in

providing the means to work on sufficiently complex problems, student team projects have their

own difficulties and drawbacks. It is important that faculty mentors and TAs recognize the

potential downsides of putting students into teams and are prepared to step in when team issues

go beyond what students are able to handle on their own. This will ensure that students are able

to continue learning new content and other important lessons along with developing the ability to

to deal with team members in an appropriate way. Weekly seminar topics can and should include

topics such as working within a team, working with team members with varying backgrounds

(e.g. instructional designers, graphic designers, etc), and also how to successfully work within a

group in which all necessary skills may not be represented or evenly represented at the outset.

From a practical perspective, such an initiative must be organized at a departmental level,

so that everyone understands what goes into the project (including human resources and

implications for other courses and the overall course sequence). It is also important that all

faculty members understand the load that this project places on students as well as the type of

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 207

work being done by students at various levels. This will allow other faculty to leverage what is

being learned in the project in their own classes. The faculty member leading the project should

also be able to count on certain core material being covered within the courses, and plan to build

upon these core skills as part of the practical experience course.

Sufficient time (credit hours) should be allotted in the schedule to make it possible for

students to dedicate significant time to the project. If a discussion or lecture section is included,

consider making the discussion section 1 credit hour and limit time spent in lecture to one hour

per week, leaving an additional significant number of credit hours as a place holder for the work

students will be doing on the project. Because a large amount of work is being done by faculty

leading this project, significant credit (course load) should be given for the work done preparing

for and overseeing the course every semester.

It would be valuable to consider teaming up with faculty and students from other

departments (as was described by Wolz et al (2011) and Coyle, Jamieson and Oakes (2005). This

will help make projects more realistic for the CS students, who can develop content expertise

from working with their peers from across campus. It will provide benefit to partnering

departments by allowing students from other areas access to the capability to design, develop,

and evaluate significant technology projects they are able to envision but not fully produce on

their own. Additional faculty resources and enrollment of students from other departments or

schools would help keep the course sustainable, and the cross-campus collaboration could result

in interesting projects that can be showcased by university administrators. Such projects may

also open up multiple avenues for various types of research and grant funding.

Although, based on participants’ comments in this study, it does not seem to be crucial

for the project to be in the same domain that students eventually end up working in, projects

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 208

related to education may be ideal. The Computing-related department can partner with

instructors and students in an Instructional Technology department or others within a school of

education to design systems intended for use in schools which can be further refined based on

educational research. Such a project would be likely to be highly motivating, as it would provide

complex demands from an interesting set of users. Using research data to drive improvements

will help both the Computing and Education students learn more about the concept of iterative,

user-focused development. Seeing the project in use by children or fellow students for an

important purpose would no doubt also be highly motivating to many.

5.4.2.2 Liberal arts and sciences courses spread throughout the curriculum

Findings of this study indicate that liberal arts courses taken as part of general education

requirements are valuable in providing very important critical thinking skills and creating well-

rounded graduates. They can also play a role in developing skills that are currently lacking in

many graduates, such as technical writing and relevant business and financial practices.

It would be beneficial to spread liberal arts courses across the four years of an

undergraduate degree, instead of grouping them at the beginning of a student’s academic career.

This will allow students to take a decent number of courses in their major during freshman year,

enabling them to decide up-front whether the major is really a good fit. Taking courses within

their major courses as early as possible will also allow students to build a foundation for

participating in practical experiences, allowing for the types of multi-year course offerings

described in the previous section and making it possible for students to participate in internships

and other important formative experiences earlier in the program. Students may also come to

appreciate the liberal arts courses more as they go further on in their program, especially if they

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 209

can see the links between what is being learned in the liberal arts courses and what they are

doing within their major area of study.

Within the “liberal arts” or general education requirements, I can see value in requiring

students to take some courses that are the same as those taken by all students at the university, as

well as offering a set of courses specifically tailored to the needs of students in the Computing

program. General liberal arts courses including topics such as history, literature, sciences, and so

on will help students to develop critical thinking and writing skills and a grounding in skills and

knowledge across multiple domains. Multi-disciplinary or team-taught courses might be

especially useful in meeting those goals. However, it would also be useful to offer a set of

courses that meets some of the general education requirements and which are geared specifically

towards Computing majors. These could focus on topics such as technical writing and business

practices specifically related to the computing industry. Multi-disciplinary or team-taught

courses could allow students to gain multiple types of expertise. These could also be carefully

integrated with the practical computing courses discussed in the previous section.

5.4.2.3 Trade-offs to provide curricular space

Adding a significant amount of additional practical experience and general education

requirements will of course have an impact on a 4-year curriculum, and curricular designers will

need to make trade-offs between these experiences and other potential topics to be covered. As

Walker (2010) pointed out, it is not possible to fit every skill or topic that could potentially be

useful in the future within a four year program, and if too many topics are covered, it is unlikely

that students will be able to retain everything.

My preliminary recommendation would be to lower the number of “core” Computing

competencies and focus on those that are necessary to build on through carefully planned

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 210

guidance during practical experiences. It also is important to think carefully about what non-

Computing requirements are necessary and valuable for most students. For example, based on

the findings of this study, it may make sense to lower the total number of math requirements for

Computing majors, and focus on topics such as discrete math which are directly applicable to

Computing theory. On the other hand, additional Communications-related courses would be a

valuable addition, as suggested in section 5.4.2.2.

One or more areas of “specialization” will allow students to dig deeper into particular

areas (for example, computer hardware, 3d imaging, or artificial intelligence). Not only will this

provide specialized knowledge to be used on the job, but, more importantly, it will give students

an experience of delving into a set of topics in depth. Regardless of where they end up in the

future, students will know they can acquire a new specialty as needed through self-study or

enrollment in carefully chosen courses.

5.5 Finally, it is important to ensure that classes are offered in a timely

manner, to allow everyone to fit all required courses into a four year

period. Including more topics in the “practical” experience hours which

are offered each semester will help in this regard. Spreading liberal arts

courses throughout the curriculum may also help, as students will be able

to fit both their general education and computing-specific requirements

in throughout the four year period when desired courses become

available, instead of concentrating general education requirements at the

beginning of the program and relying on specialized courses to be

available in the last two semesters. The Role of Hiring Managers

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 211

Although employers can be valuable partners in fostering changes in education policy,

hiring practices can also have very negative consequences. As was discussed in section 2.3.1.7

of the literature review, job advertisements in Computing-related areas often contain an

extensive and very specific list of required skills. By creating job requirements which ask for

such specific skill-sets, they make it impossible for graduates – and schools – to argue that their

critical thinking and communication skills and grounding in the foundational theoretical concepts

in Computing or Instructional design prepares them for employment. Instead, these job

requirements will drive schools further into pursuing the latest programing language or technique

– an impossible goal since the precise combinations of specific versions of technologies asked

for by employers will continue to change more quickly than students can be graduated from a

program in which these technologies are covered.

Furthermore, over the duration of a career, entire new fields may become important and

existing employees may begin to serve new roles before educational institutions catch up and

design related programs. For example, study results highlight the importance of user experience

design, an area most had no little or no formal educational background in. Study participants

indicate that they regularly educate themselves in such new disciplines, although they may or

may not ever return for a formal degree. They also may be required to play a new role, such as

user experience designer, while continuing to play other roles, such as lead developer.

Hiring managers also do themselves a disservice by presenting such requirements for

employment. As participants of this study explain, a passion for learning should be an expected

trait of an individual working in this type of field. In this fast-changing world, the technology

used today may not be the ideal solution for the design problem faced tomorrow. An individual

with many years of experience in a specific tool or technique may not necessarily be the best

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 212

person for the job. In fact, results of this study indicate that the best hiring decision would be to

select an individual with a proven track record of teaching himself or herself what is needed to

do the job. Not only will this prepare the potential employee to learn to use new technologies if

asked to do so, it will also make it much more likely that this individual will actively look for

appropriate new technologies and recommend them for use on the project, rather than falsely

sticking to a stale skill-set learned at school. “Passion for learning”, “critical thinking”, and

“communication skills” may be harder to quantify or determine by reviewing a resume, but are

likely to be much more important indicators of a potential employee’s future value to the

organization than a list of specific programming languages or platforms used for a specified

number of years by an applicant.

In a discussion with Jeremy Podany, Director of Career Services for the Indiana

University’s School of Informatics and Computing (J. Podany, personal communication, July 7,

2011), he revealed that although some job ads may not make it clear, employers looking for

entry-level Computer Science and Informatics students are in fact looking for just these skills.

Mr. Podany indicated that most employers he works with assume that graduates have the

necessary technical skills, and use interviews to determine whether these potential new

employees have the character and “chemistry” needed to work in their corporate environment.

The “chemistry” factor, according to Mr. Podany, relates to how well a potential employee

would fit in the corporate culture, and relates to “soft skills” including work styles. These factors

are not generally specifically mentioned in the desired skills list on most job advertisements,

though they might be reflected in a section such as “About Us”.

Mr Podany also directed me to look at “Job Choices for Science, Engineering, and

Technology Students 2011”, a magazine aimed at students who will soon graduate, which is

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 213

produced by the National Association of Colleges and Employers and sent to university career

service offices. One article in this magazine includes a figure summarizing findings of a report

done by this organization on what employers want in “the perfect candidate”. This includes the

following ten traits: Communications skills (oral and written), a strong work ethic, initiative,

interpersonal skills, problem-solving skills, relevant work experience (through an internship or

co-op assignment), analytical skills, teamwork skills, flexibility and adaptability, and technical

skills. The article points out that

The job description will provide you with a list of required qualifications – a

particular major or group of majors, a specific skill set, a minimum GPA, and so

forth – but employers have a substantial list of abilities, qualities, attributes, and

“soft” skills they also seek in new hires. (Job-search success for the class of 2011,

2010, p. 13)

This would seem to imply that employers do, in fact, value the very skills pointed out in

this study as being crucial to success in this field. However, job ads typically do not reflect this.

Hiring managers should consider whether not including this information is really beneficial in

recruiting appropriate employees. In the meantime, faculty and career service offices can

encourage students to understand the value of highlighting these non-technical skills through

cover letters and interviews, as well as helping students understand why non-technical

coursework and participating in team projects and similar experiences can be important to their

future career.

Finally, once employees have been hired, managers should understand the importance of

providing time and resources for self-education. Brooks (2010) recommends that structured

training and mentorship be provided to novice designers. This recommendation was supported

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 214

by study participants’ recollections of their own early experiences and the value they derived

from working closely with more experienced colleagues, and is consistent with recommendations

in literature relating to Continued Professional Education. Managers need to be supported by the

organization in providing the time and resources necessary for self-education of employees. As

many participants indicated that self-paced, independent learning was much more valuable than

formal training courses, it would be helpful if organizational policy recognized the value of

informal as well as more formal on-the-job learning.

5.6 Limitations

Because I was unable to identify a single specific resource which would enable me to

contact or identify information about this population, a number of different recruitment strategies

were used, including posting invitations in listservs, linkedIn groups, and other discussion

forums, as well as the use of a snow-ball technique starting with the researcher’s own personal

contacts. There was a relatively large representation from some sources, especially the ACM

SIGCSE and SIGITE (Computer Science Education and Information Technology Education

Special Interest Groups of the Association for Computing Machinery), while other sources

resulted in few or no responses to the survey. I suspect that this distorted the sample in some

areas, especially in the number of participants who are current faculty members in higher

education. Therefore, the findings are not meant to be generalized to a larger population. Rather,

they represent the variety of backgrounds and attitudes among this group which raise questions

to be explored further.

The findings of this study are based on participants’ own perceptions of their learning and

the importance of various forms of learning. Participants’ memories may not always be exact,

especially in the case of very experienced professionals who may have graduated several decades

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 215

ago. Furthermore, participants may not necessarily be able to identify the optimum way to learn

or acquire particular skills, knowledge, or attitudes. However, understanding the experiences of

these apparently successful professionals may well lead to valuable insights into ways to

improve formal education as well as more structured non-formal educational experiences for

novice professionals.

 A few specific issues were identified in the Phase 2 survey instrument. As mentioned in

the Findings section, the questions relating to degrees held were clearly not interpreted as

intended by some participants. This was evidenced by the fact that a number mentioned only a

single graduate degree, with no earlier degrees reported. Follow-up interviews with two

participants in this category revealed that they had, indeed, left out multiple additional degrees.

Because of this issue, I was not able to analyze data at the level of granularity I had initially

hoped for. This may have allowed me to answer some of the open questions described in the

discussion section.

 Another question that was: “Over the span of your professional career, which of the

following roles have you played in addition to the ones you hold now?” Quite a few participants

also included roles they currently played, but some did not include the full set currently played.

Since I am not certain how it was interpreted, I decided to leave this item out of the findings

reported. Finally, one required item had an “other” field but no checkbox next to the “other”

field. Therefore, even if something was entered into the “other” field, at least one additional

closed-ended option had to be chosen, even if participants did not agree with any of the available

choices. Some participants might have been forced to choose an answer they did not completely

agree with, or drop out.

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 216

 Finally, I did not receive the degree of respond in the third phase of the study that I had

hoped for. Although over 40 volunteers were contacted for follow-up interviews in Phase 3,

only 4 completed the follow-up interview. Although these responses added interesting aspects to

the data, they were not sufficient to address some of the open topics. I had especially hoped to

learn more about recent graduates, but although three participants were currently enrolled in PhD

programs, none of those who responded could discuss recent experiences in a Bachelor’s or even

Master’s program in a Computing or Instructional Design related program. Because of this lack,

data from Phase 3 was merged with Phase 1 data, providing interview data from 13 individuals,

in addition to open-ended responses from 74 of the survey participants on select topics.

5.7 Areas for Future Research

A planned future study of computing professionals across a range of industries will use a

refined version of the questionnaire used in this study (correcting issues found during analysis, as

well as modifying questions aimed at educational software or instructional technology to more

general terms relating to the domain participants work in). Another study may look at the types

of non-formal educational experiences sought by computing professionals, and the approaches

they use in self-learning. Eventually, the researcher hopes to replicate this type of study in other

design fields, including Instructional Design.

6 Works Cited

ABET Computing Accreditation Commission. (2010). Criteria for accrediting Computing
programs: Effective for evaluations during the 2011-2012 accreditation cycle. Retrieved
from http://www.abet.org/Linked%20Documents-UPDATE/Program%20Docs/abet-cac-
criteria-2011-2012.pdf

Abran, A., Bourque, P., Dupuis, R., & Moore, J. W. (2001). Guide to the Software Engineering
Body of Knowledge. Piscataway, NJ, USA: IEEE Press.

ACM and IEEE Computer Society. (2008). Computer Science curriculum 2008: An interim
revision of CS 2001.

Andriole, S. J., & Roberts, E. (2008). Technology Curriculum for the Early 21st Century.
Communications of the ACM, 51(7), 27-30.

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 217

Atlee, J. M. J., LeBlanc, R. J., Lethbridge, T. C., Sobel, A., & Thompson, J. B. (2006).
Reflections on Software Engineering 2004, the ACM/IEEE-CS Guidelines for
Undergraduate Programs in Software Engineering Software Engineering Education in the
Modern Age (pp. 11-27). Berlin, Germany: Springer.

Boling, E., & Smith, K. M. (2007). Artifacts as tools in the design process. In M. D. M. J.
Michael Spector, Jeroen van Merrienboer, Marcy P. Driscoll (Ed.), Handbook of
Research on Educational Communications and Technology (3 ed.). Mahwah, NJ:
Routledge.

Brooks, F. P. (2010). The design of design: Essays from a computer scientist. Upper Saddle
River, NJ: Addison-Wesley.

Cennamo, K., Douglas, S., Vernon, M., Brandt, C., Scott, B., Reimer, Y., & McGrath, M.
(2011). Promoting creativitiy in the computer science design studio. Paper presented at
the SIGCSE '11, Dallas, Texas.

Cervero, R. M. (2001). Continuing professional education in transition, 1981-2000. International
Journal of Lifelong Education, 20(1/2), 16-30.

Cooper, S., & Cunningham, S. (2010). Teaching Computer Science in Context. Inroads, 1(1), 5-
8.

Cox, S., & Osguthorpe, R. (2003). How do Instructional Design professionals spend their time?
Techtrends, 47(3), 45-47, 29.

Coyle, E. J., Jamieson, L. H., & Oakes, W. C. (2005). EPICS: Engineering projects in
community service. International Journal of Enginering Educaiton, 21(1), 1-12.

Creswell, J. W., & Clark, V. L. P. (2007). Mixed Methods Reseach. Thousand Oaks, CA: Sage.
Cropley, A. J. (1989). Lifelong education: Interaction with adult education Lifelong education

for adults: An international handbook (pp. 9-12). Oxford: Pergamon.
Cross, N. (2001). Designerly ways of knowing: design discipline vs. design science. Design

Issues, 77(3), 49-55.
Cross, N. (2004). Expertise in design: An overview. Design Studies, 25(5), 427-441.
Daley, B. J. (2000). Learning in professional practice. New directions for adult and continued

learning, 86, 33-42.
Denning, P. J. (2001). When IT becomes a profession The invisible future: the seamless

integration of technology into everyday life book contents (pp. 295-325). New York, NY:
McGraw Hill.

Denning, P. J. (2008). The profession of IT: Voices of computing. Communications of the ACM,
51(8), 19-21.

Denning, P. J., Athale, R., Dabbagh, N., Menasce, D., Offutt, J., Pullen, M., . . . Sadhu, R.
(2001). Designing an IT college. Paper presented at the IFIP TC3 Seventh IFIP World
Conference on Networking the Learner: Comptuers in Education.

Dewar, R., & Astrachan, O. (2009). Point/counterpoint: CS education in the U.S.: Heading in the
wrong direction? Communications of the ACM, 52(7), 41-45.

Dewar, R., & Schonberg, E. (2008). Computer Science education: Where are the software
engineers of tomorrow? CrossTalk, 21(1), 28-30.

Driscoll, M. P. (2000). Motivation and Self-Regulation in Learning Psychology of Learnign for
Instruction. Needham Heights, MA: Allyn and Bacon.

Exter, M. E., & Turnage, N. H. (2011). Exploring experienced professionals’ reflections on
computing education. . Manuscript submitted for publication.

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 218

Fisher, J., Alvarez, J., & Taylor, R. (1978). A survey of how practicing programmers keep up-to-
date first results including their implications for computer science education. Paper
presented at the Proceedings of the ninth SIGCSE technical symposium on Computer
science education, Pittsburgh, Pennslyvannia.

Ghassan Alkadi, T. B., Robert Schroeder. (2010). The someimtes harsh reality of real world
Comptuer Science projects. Inroads, 1(4), 59-62.

Gibbons, A. S. (2000). The practice of instructional technology. Paper presented at the Annual
International Conferece of the Association for Education Communications and
Technology, Denver, CO.

Green, S. B., & Salkind, N. J. (2008). Using SPSS for Windows and Macintosh: Analyzing and
understanding data (Fifth ed.). Upper Saddle River, NJ: Pearson Education, Inc.

Groth, D. P., & Hottell, M. P. (2006). Designing and developing an Informatics capstone course.
Paper presented at the 19th Conference on Software Engineering Educaiton & Training.

Gudzia, M. (2010). Does contextualized computing education help? Inroads, 1(4), 4-6.
Hanna, Y., Yap, V., Fong, K. W., Fletcher, J., & Bancroft, C. Study of Job Skills-Set Required of

IS Graduates for Work in Instructional Design. Retrieved from
http://vinceyap.com/uploads/6635_FinalResearchReport.pdf

Hauer, A., & Daniels, M. (2008). A learning theory perspective on running open ended group
projects (OEGPs). Paper presented at the Prcedings of the Tenth Australasian Computing
Education Conference (ACE 2008), Wollongoing, Austrailia.

Houle, C. O. (1980). Continued Learning in the Professions. San Fancisco, CA: Jossey-Bass.
IEEE Conferences and Meetings. (2008) Retrieved November 21, 2008, from

http://www.ieee.org/web/conferences/home/index.html
Kenny, R. F., Zhang, Z., Schwier, R. A., & Campbell, K. (2005). A review of what Instrucitonal

Designers do: Questions answered and questions not asked. Canadian Journal Of
Learning And Technology / La Revue Canadienne De L’Apprentissage Et De La
Technologie, 31(1). Retrieved from
http://www.cjlt.ca/index.php/cjlt/article/view/147/140

Kirk, R. (1999). Statistics: An introduction (Fourth ed.). Orlando, FL: Holt, Rinehart and
Winston.

Knox, A. B. (2000). The continuum of professional education and practice. New Directions for
Adult and Continuing Education, 86, 13-22.

Knox, A. B. (2006). The continuum of professional education and practice. New Directions for
Adult and Continuing Education, 86, 13-22.

Korkmaz, N. (2011). How is development of design judgement addressed in Instructional Design
educaiton? Doctoral dissertation, Indiana University, Bloomington, Indiaan.

Kuchinke, K. P. (1997). Employee Expertises The Status of the Theory and the Literature.
Performance Improvement Quarterly, 10(4), 72-86.

Kumar, D. (2010). Reflections: Languages, Wars and False Dichotomies. Inroads, 1(3), 10-11.
LACS. (2007). A 2007 model curriculum for a liberal arts degree in computer science. Journal

on Educational Resources in Computing (JERIC), 7(2), 1-34.
Larson, M. B. (2005). Suvey of the Alignment of Prepration and Practice. Techtrends, 49(6), 22-

32,68.
Larson, M. B., & Lockee, B. B. (2007). Preparing Instructional Designers for different career

environments: A case study. Educational Technology Research and Development, 57(1),
1-24.

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 219

Lawson, B. (1997). Route maps of the design process How Designers Think: The Design Process
Demystified (Third ed.). Boston, MA: Architectural Press.

Lawson, B. (2004). Schemata, gambits, and precedent: Some factors in design expertise. Design
Studies, 25(5), 443-457.

Lengrand, P. (1989). Lifelong education: growth of the concept Lifelong education for adults: An
international handbook (pp. 5-9). Oxford: Pergamon.

Lethbridge, T. C. (2000). What knowledge is important to a software professional. Computer,
33(5), 44-50.

Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic Inquiry. Newbury Park, CA: Sage.
Livingstone, D. (2001). Adults' informal learning: definitions, findings, gaps and future research.

T-Space at The University of Toronto Libraries: Centre for the Study of Education and
Work (CSEW). Retrieved from
http://www.oise.utoronto.ca/depts/sese/csew/nall/res/21adultsifnormallearning.pdf

Job-search success for the class of 2011. (2010). Job Choice 2011: Science, engineering,
technology students.

Mott, V. W. (2000). The development of the professional expertise in the workplace. New
Directions for Adult and Continuing Education, 86, 23-31.

Nelson, H. G., & Stolterman, E. (2002). The Design Way: Intentional Change in an
Unpredictable World. Englewood Cliffs, NJ: Educational Technology Publications.

Nurkkala, T., & Brandle, S. (2011, March 9-12). Software studio: Teaching professional
software engineering. Paper presented at the SIGSCE '11, Dallas, Texas.

O'Donnell, K. (2006). National household education surveys program of 2005: Adult education
participation in 2004-2005. National Center for Education Statistics. Retrieved from
http://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2006077

Petroski, H. (1992). Engineering as hypothesis To Engineer is Human: The role of Failure in
Succesful Design (pp. 40-52). New York, NY: Vintage Books.

Popyack, J. L. (2010). Are you ready for teh renaissance? Inroads, 1(1), 31-32.
Radcliffe, D. J., & Colletta, N. J. (1989). Nonformal education Lifelong education for adults: An

international handbook (pp. 60-63). Oxford: Pergamon.
Richey, R. C., Fields, D. C., & Foxon, M. (2001). Instructional design competencies: The

standards. . Syracuse University: Syracuse, NY.
Rowe, P. G. (1991). Procedural aspects of design thinking Design Thinking (pp. 39-113).

Cambridge, MA.
Schon, D. (1987). Educating the reflective practitioner, as presented at the 1987 Meeting of the

American Educational Research Association. Retrieved November 18, 2008, from
http://educ.queensu.ca/~russellt/howteach/schon87.htm

Shulman, L. S. (2005). Signature pedagogies in the professions. Daedalus, 134(3), 52-59.
Smith, K. M. (2008). Meanings of "design" in instrucitonal technology: A conceptual analysis

based on the field's foundational literature. Unpublished doctoral dissertation, Indiana
University, Bloomington, Indiana.

Spector, J. M., Klien, James D., Reiser, Robert A., Sims, Roderick C., Grabowski, Barbara L.,
de la Teja, Ileane. (2006). Competencies and Standards for Instructional Design and
Educational Technology. Paper presented at the ITFORUM.

Srinivasan, L. (1989). Nonformal education: Instruction Lifelong education for adults: An
international handbook (pp. 212-214). Oxford: Pergamon.

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 220

. Standards for the accreditation of school media specailist and educational technology specialist
programs. (2005). In R. S. Earle (Ed.). Bloomington, IN: Association for Educational
Communications and Technology.

Surakka, S. (2004). Analysis of job advertisements: What technical skills do software developers
need? Paper presented at the Fourth Finnish/Baltic Sea Conference on Computer Science
Education, Koli, Finland.

Teddlie, C., & Tashakkori, A. (2009). Foundations of Mixed Methods Research: Integrtign
Quantitative and Qualitative approaches in the Social and Behavioral Sciences.
Thousand Oaks, CA: Sage.

The Joint Task Force on Computing Curricula. (2004). Software Engineering 2004: Curriculum
guidelines for undergraduate degree programs in software engineering [electronic
version]. Retrieved from http://www.acm.org/education/curricula.html

Tough, A. M. (1989). Self-directed learning: Concepts and practice Lifelong education for
adults: An international handbook (pp. 256-261). Oxford: Pergamon.

Vincenti, W. G. (1990). Chapter 7: The anatomy of engineering design knowledge What
engineers know and how they know it: Analytical studies from aeronotical histories (1
ed., pp. 200-240). Baltimore, MA.: Johns Hopkins Univesrity Press.

Walker, H. (2010). Eight principles of an undergraduate program. Inroads, 1(1), 18-20.
Wolz, U., Cassel, L., Way, T., & Pearson, K. (2011, March 9-11). Cooperative expertise for

multidisciplinary computing. Paper presented at the SIGCSE '11, Dallas, Texas.

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 221

7 Appendix A: Phase 1 Semi-structured interview protocol

INITIALS:

DATE:

Thank you for your willingness to participate in this study.
Have you had a chance to look over the study information sheet that I sent you? Do you have
any questions?

I would like to remind you once again that we can end the interview at any time you feel
uncomfortable or wish to stop. Also, if you say something inadvertently that you do not want to
be included in the transcript – such as proprietary information – just let me know during or after
the interview and I will omit that segment from the transcript.

Do you mind if I type while we talk?

Do you mind if I record our conversation? The recording will only be used to help me make a
complete and accurate transcription.

PRESS RECORD

1 Current Role

1.1 Where do you currently work?

1.2 What is your official title at <company>?

1.3 Is your current job related to the design or development of software? (if not, ask about
previous roles).

1.4 Does your current job relate to the development of educational or instructional software?
Can you please describe what type? (if not instructional or educational or related (e.g.
support systems for instructional design efforts), ask about previous roles)

1.5 What was your work history prior to starting this role?

1.6 How did you become involved in educational software design?

1.7 What does your current role entail? Are there any aspects of this job which you feel are
unique to working in a [instructional design/educational software design] related company?

1.8 [If this has not come out sufficiently in the previous questions:] What types of skills and
knowledge are most important for the role(s) you currently fill in your job?

2 Formal Education

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 222

2.1 What is your formal educational background?

2.2 What are the most important things you learned within [CS/SE/other “technical”] courses as
applies to your current role? [If applicable]

2.3 What are the most important things you learned in within [education/IST/Ed Tech] courses as
applies to your current role? [If applicable]

2.4 What did you learn in other courses [e.g. GenEds or courses taken as part of an unrelated
major] that turned out to be applicable to your current role?

2.5 Are there things you do within your current job which you felt your formal educational
background did not adequately prepare you for?

3 Non-Formal Education

3.1 Where do you go to learn more about technical skills/knowledge (e.g. programming
languages, technologies, software design concepts) you need on the job? [If multiple
sources, e.g. training courses, peers, books, internet, internal resources, experimentation:]
how do you decide when to go to each source?

3.2 Where do you go to learn more about non-technical skills/knowledge you need on the job?
[If multiple sources, e.g. training courses, peers, books, internet, internal resources,
experimentation:] how do you decide when to go to each source?

4 Recommendations for Educational Programs
4.1 Ask first: what type of degree do you think is most useful for people working in your role,

working on educational software?

4.2 4.2 Follow up: Do you think people benefit from industry-specific courses or just focus on
technical?

4.3 If you could design an ideal undergraduate or Master’s program to prepare someone for the
role you currently fill, what would it look like?

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 223

8 Appendix B: Phase 2 Survey instrument

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 224

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 225

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 226

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 227

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 228

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 229

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 230

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 231

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 232

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 233

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 234

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 235

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 236

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 237

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 238

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 239

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 240

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 241

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 242

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 243

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 244

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 245

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 246

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 247

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 248

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 249

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 250

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 251

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 252

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 253

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 254

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 255

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 256

9 Appendix C: Phase 3 interview protocol: Sample of a personalized email

Thank you for participating in a survey regarding your educational background and work
experiences on December 20, 2010. While taking the survey, you indicated that you may be
willing to participate in a follow-up interview. I would like to offer you the option to respond
either via email or via a phone interview, whichever you are more comfortable with. The
questions I would like to address are listed below.

1. In the survey, you indicated that you plan to graduate with a Doctoral degree in 2015. What is
your major area of concentration? You did not indicate any prior degrees. Have you completed
other degrees? If so, could you please give the type of degree (Bachelors, Doctoral, etc), year of
graduation, and major for each?

2. Does any of the coursework for the degree you are currently pursuing involve engaging in
real-world or realistic projects? If so, could you briefly describe what these projects entailed
(e.g. duration, type of project, group vs individual project, whether it was for a real client or a
hypothetical problem)? Was this helpful in preparing you for your current or previous
professional role(s)?

3. Have any courses or activities you have participated in as part of this degree program focused
on one or more specific domains (e.g. “Educational Software”, “Games”, etc.)? Was this
valuable in preparing you for your current or previous professional role(s)? If so, why?

4. In your survey response, you indicated that degree program(s) you attended did a good job at
covering the following areas. For each, could you please briefly indicate how this skill or topic
was covered or fostered within the courses you took?

 a. Designing and developing instructional software
 b. Testing practices
 c. Business aspects of the industry I work in
 d. Working in teams

5. Were there any experiences that you felt were really lacking in your own educational
background?

6. Were there any areas relevant to your current professional position that you felt the program(s)
you attended excelled at?

As you may or may not recall, the survey included an open-ended question regarding your
suggestions for an “ideal bachelor’s degree program to prepare someone for your current
position”.

You indicated you felt an ideal program would be a hybrid degree including CS (or similar) and
Education (or similar). You indicated that it is important to focus on the domain one plans to
work in (e.g. "education" or a more specific area such as "language education"), and that formal
training in programming languages and other technical aspects of software design/development

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 257

is important, but not as important as the ability to think critically. You further recommended the
following traits for the ideal bachelor's degree program: "Critical thinking Logic thinking
Programming experience Gaming concepts Database management skills Artistic training (3D
modeling) Various levels of mathematics capstone course"

1. The question asked you to address the program in terms of preparation for “someone in your
current position”. What type of roles do you believe this type of program might prepare them
for?

2. You recommended artistic training, specifically 3D modeling. Is this something you would
recommend in a degree program for educational software design generally, or is this a skill very
specific to your current role?

3. You also recommended gaming concepts. Would you recommend this to people pursuing a
career in educational software design generally, or only those who will focus on educational
games specifically?

4. You recommended various levels of mathematics. What types of mathematics would you
recommend specifically?

5. Individuals who participated in the survey indicated that the following areas are important in
developing an ideal program. To what extent do you believe that each of these should be
incorporated into the program? Do you have any additional suggestions on good ways to
incorporate these competencies into a degree program?

 • Foster creativity
 • Foster critical thinking skills
 • Foster the ability and interest in continuous on-the-job learning
 • Develop artistic or visual design skills
 • Gain experience with skills and tools used in real-world problems on the job
 • Give lots of practical experience
 • Provide a solid foundation in software engineering theory and practices
 • Provide a solid foundation in software development/programming theory and practices
 • Provide a solid foundation in instructional design theory and practices
 • Provide a solid foundation in user interface design theory and practices

6. Is there anything else you would like to add on this topic?

Please review the attached Study Information Sheet for more information about the study and
your rights and protections before responding to this email. If you would prefer to participate in a
phone interview instead, I would be happy to schedule one with you. The phone interview would
likely take about 30-40 minutes.

If you have any questions about the study or procedures, please contact me at
mexter@indiana.edu.

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 258

Thank you in advance,

Marisa Exter
mexter@indiana.edu
Doctoral Candidate, Instructional Systems Technology
Indiana University, Bloomington, Indiana

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 259

10 Appendix D: Notes from external review of coding by experience colleague

Review of Qualitative Findings (themes): 5/23/2011

Reviewer’s Background

This reviewer has worked both individually and with me on related research projects.

She also has a work history in computing, degrees in both CIS and IST, and is currently teaching

Computer Science. She is very familiar with CS standards, as she is currently participating in a

re-design of a CS program.

Review Process

I had a skype meeting with the external reviewer on May 23, 2011. I sent her a printout

of the coding hierarchy, as displayed in the NVivo software. This contained only the list of

themes and sub-themes, not the actual transcript text. However, if she had a question about the

meaning of any of the themes, I read relevant sections of text out to her.

She looked through the entire hierarchy and provided the following feedback:

Comments on arrangement of themes and sub-themes

1. Move ideal program->program traits->communication skills to a subtheme under
programprogram traitstraits to foster in ideal people”

a. “Computing foundations” vs “Computing specialty areas”: She agrees with the
naming and content of these themes.

b. Her response to “computing foundations”: “[the courses listed under ‘computing
foundations’] are courses that would be in ANY CS program, the things that our field
considers to be the core of what we do. They stay the same no matter what domain or
industry you are practicing them in.”

c. Her response to “computing specialty areas”: she feels this is appropriately named
and that these do not belong in “computing foundations”. AI, security, etc. are all
topics which may be used more heavily in some domains than others. They are skills
some employers might look for to fill a specific role, but would not assume that
everyone has. For example, Lockheed martin, DOE, MacAfee, Norton – look for
people with specialties in security. Lucent Technologies may look for people with
firm foundation in hardware and R&D. Walmart would look for people who generally

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 260

“code well”. In several cases in my study, people indicated the importance of “web
security” for those working on e-learning or LMS systems.

2. She did not feel that “Domain-specific foundations” was a coherent category, and
recommended I break this up between “Computing Specialty” and a new category,
“Education Specialty Areas”.

a. Move to “Computing specialty areas”
i. game design,

ii. simulation (assuming that by this they meant a physics engine – I will look
again at the context of the places this was mentioned and try to determine
what was meant. Generally there was not a lot given but I may be able to
determine what was probably meant based on the type of software they work
on)

iii. “Computation as a problem solving method”: Reviewer explains: “There is a
new field of computation science. This involves new cross-disciplinary
programs , for instance a program that combines a major in chemistry or
mathematics or physics + a computational degree. The purpose of these
programs is to learn how to use Computer Science within your specific
domain.”

b. “Educational specialty areas”
i. Content areas

ii. Domain-spec teaching
iii. In-depth courses in application areas

3. The theme “Nonformal ed->Nonformal ed lead to choose higher ed” seems to be kind of an
outlier in this area. Consider moving it somewhere else.

4. My question: how can I simmer down “other” categories, or sub-categories under nonformal
ed types….

a. Can group some together ---even if the text coded says something slightly different,
but says it about the same category. Examples:

i. Help you get past a mental block or Help you to work through the
problem would include sub-themes where co-workers or other people help
you push past where you are stuck in some way. Includes the current codes:

1. Person helps find patterns you haven’t seen before
2. People – when a problem is difficult to understand
3. Help get to the next level

ii. Experts or Looking for expertise: For my purposes, it does not matter if they
are inside or outside experts. They are people who really know the thing that
you need to learn how to do. Includes the current codes:

1. Expert consultants
2. SME
3. Outside consultants

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 261

4. Whoever has info
5. Other than above, nothing jumps out that doesn’t make sense to her. All themes and sub-

themes seem distinct and make sense.

Additional feedback offered:

1. She found it “Interesting” that 21 people felt a hybrid program would make sense. She
would not have expected that a large number of people would say this. She would have
expected that most people would recommend something similar to their own degree
(either Computing or ID related, or something else).

2. Interesting that “mentorship” is only mentioned by one person
a. Note: I explained that I want to be very cautious about making it for survey

participants a lot of the responses were very brief and turse to a pretty broad open-
ended question. So, I don’t feel that I can say for sure that people WOULDN’T
think it is important, if I asked them this directly. Reviewer agreed.

3. It made her feel good that what I see in Nonformal education area follows the same lines
as what we saw in an earlier study, even though I allowed the themes to emerge and did
not try to code it to the same structure as in the earlier study. She felt that although the
findings are not exactly the same, they are very similar and the general message is the
same.

Specific questions I asked her:

Q: I merged responses to questions regarding “what did you find particularly useful in your own
education” and “what would you recommend for an ideal degree program” (phase 1 and phase 3
follow-up questions on this topic) or “What would you recommend for an ideal Bachelor’s
degree program” (Phase 2 and Phase 3 follow-up questions on this topic). Do you agree that it is
ok for me to merge these two together? I found a lot of overlapping codes or similar areas, so I
felt that this would make sense.

A: Yes. If it is important enough that they remember after all this time, it makes sense they are
also recommending it to others.

Q: On EXB’s recommendation, I did use multiple codes on the same text segments. That is,
within one text segment, 2 or more codes may overlap. For example, while recommending a trait
for an “ideal program” a participant would illustrate by describing an element that lacking in
their own formal education. This description may go on for a paragraph or so, and contain
mention to several aspects (courses, activities, or traits) that I coded as aspects that would be part
of an ideal program. Do you agree that this makes sense? I would like to be able to report them
both ways –both to point out what was missing in existing programs, and to use this as part of the
recommendations for program improvements.

A: It makes sense that you found a lot of overlapping codes between “weren’t covered in my
program” and “ideal program”. It makes sense that you would use it in both those ways.

[NOTE: I gave some specific examples and the conversation went on longer than implied here
but I did not record all of it verbatim.]

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 262

Q: For the themes “Working in Ed SD” and “Formal Education”: For some of those areas,
specifically the types of software created, types of roles played, and Majors and degree types
held by interview participants, I do not intend to directly report on these qualitative findings.
They were primarily used to inform development of the survey. Therefore, I plan to report the
quantitative findings (which represent a much larger group of participants) and only draw from
the qualitative data in these sections for interesting or illustrative quotes.

A: That makes sense.

Q: In the section “Working in Ed Sd”, I have separated “important skills, knowledge and
attitudes” (things which they indicated were specifically important to them on the job) from
“Skills and knowledge unique to Ed SD”. The latter were skills and knowledge they felt were
unique to working in this domain. Does this make sense, now that you have reviewed the
themes?

A: [after reviewing again]: Yes.

Q: Based on your own research and experience, does everything here ring true to you?

A: Yes, it seems that the things you are getting from what your participants said lines up quite a
bit with what other people we talked to said and my own feeling about the field and how it
works. I don’t see anything that goes against what I thought they should be.

Q: Is there anything you see in these findings that surprises you?

A: No, not really. Other than, you know the part where they talked about – the one spot where
we were talking about earlier – when we were looking at the Ideal Programs and actual type of
degrees they were recommending, the number of people who indicated a hybrid program. My
expectation would be that whichever degree they had gotten, that would be the one they would
remember. That is the only thing – and it wasn’t shocking, just interesting to me. But other than
that…there is nothing…too surprising.

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 263

11 Appendix E: Member checking

11.1 Response #1 (Phase 1 participant I1)

Hi Marisa,

Great content. I found the thesis inline with my experiences.

Trivia: I did notice the occasional minor defect in layout, but you are probably filtering yourself.

p113 Review bracket use (
p171 Error!Reference Source not found
p205 Limitation header (move to next page)
And Appendix B was all in bold.
Hope that helps

I would enjoy passing on to the right authorities at <university employed at> as soon as it is
published. It does hint at changes in course structure for software engineers.

11.2 Response #2 (Phase 3 participant S56)

Marisa

I don't have many comments. I just skimmed chapters 4 & 5. These three things jumped out at
me:

Page 112:

"However, participants who either had education in computing fields or were self-trained seemed
more confident in their ability to pick up new programming languages and technologies than
those with a background in ID or education only."

The word 'seemed' is a rather weak word. I would say that most people who have computing
degrees or self-trained were sure that they could pick up a new programming language. Nearly
all programming languages are the same it is just syntax and APIs that make them different.

Page 189:

"The only statistically significant difference between groups on the high-level design and low-
level design roles is between those with a background in Computing and those with a
background in neither area. I cannot explain this finding; since these are quite technical roles; I
would have thought that the pattern here would be similar to that seen in software architecture
and technical requirements gathering/generation."

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 264

I'm not sure if I have mistaken what you are trying to say but I can tell you why high-level
design is done by those with a background in Computing: It is all to do with what managers
expect these roles to have and they expect them to have a degree and for it to have been in
Computing. It is only after many years of experience that someone can dismiss what degree they
have and just point a manager at their body of experience on their CV. If you do not have a
degree in computing you will not even get an interview for many jobs and if you do it is because
your CV has 15+ years of experience showing that you are able to do the job.

It is only after about 15+ years of experience that when I had interviews my degree and its
subjects were not mentioned but, of course, I do have a degree in Computing so maybe all was
OK just because of that fact.

Page 204:

"For example, study results highlight the importance of user experience design, a relatively new
area."

Nothing particularly new about user experience design. One of the projects I worked on from
1990-1997 had a whole team dedicated to getting the user experience correct. Admittedly, it was
in the world of defence and involved a lot of interaction modelling to make sure the users of the
command and control system on a Royal Navy Frigate could determine what needed to be done
from the information presented and take the correct action before the ship was sunk.

11.3 Response #3 (Phase 1 participant I5)

Marisa:

Thanks for giving us an opportunity to review your draft. I got through as much of it as I could,
enjoyed what I read, and only found one small typo correction for you:

p. 116, section 4.3.1, par. 1, sent. 2: "... so much TO learn, so much to know." (first 'to' is
missing)

I'd love to take you up on your offer of a copy of the finished dissertation, too.

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 265

12 Appendix F: List of Participants Quoted in the Text

Table 23 Interviewees Quoted in the Text

 Formal
Education

Current Roles Played Former Work Experience

 Ty
pe

s o
f

Co
ur

se
s T

ak
en

De
si

gn
 (S

of
tw

ar
e

Ar
ch

ite
ct

ur
e,

Re

qu
ire

m
en

ts
,

Hi
gh

/L
ow

 L
ev

el
 D

es
ig

n)

De
ve

lo
pm

en
t

(P
ro

gr
am

m
in

g,
 D

B
de

si
gn

,
W

eb
 d

es
ig

n/

de
ve

lo
pm

en
t)

U
se

r E
xp

er
ie

nc
e

De
si

gn

Q
ua

lit
y

As
su

ra
nc

e
Te

st
in

g

In
st

ru
ct

io
na

l D
es

ig
n

Su
pe

rv
is

or
y

O
w

ne
r

Ex
pe

rie
nc

e
in

 S
of

tw
ar

e
De

si
gn

b

Ex
pe

rie
nc

e
in

 ID
b

Te
ac

hi
ng

 E
xp

er
ie

nc
eb

I 1 Both No Yes No Yes No No No A lot - A little
I 2 Computing Yes No Yes No No Yes Yes A lot A fair

amount
-

I 3 Neither No Yes Yes No No Yes No A lot - -
I 4a Computing No No No No No Yes No A fair

amount
- -

I 5 Both Yes Yes Yes No Yes Yes Yes A lot A lot A little
I 6 ID/ Education Yes Yes No No Yes Yes No A fair

amount
A fair
amount

A fair
amount

I 7 Computing Yes Yes No No No Yes Yes A lot - A lot
I 8a Both No No No No Yes No No A fair

amount
A fair
amount

A fair
amount

I 9 ID/Education Yes No Yes No Yes Yes No Unclear A lot A little
a Do not meet the criteria for participation based on current roles, but have previously filled relevant roles.
b Not all interview participants specified a specific number of years. For those who gave a specific years, “A little” indicates 1-4 years, “A fair amount” indicates
5-10 years, and “A lot” indicates 11 or more years. For those who did not give a specific number of years, I assigned these terms given my sense of the extent of
their experience. A “-“ indicates that the topic did not come up during the interview and that the individual probably does not have experience in this area.

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 266

Table 24 Survey Participants Quoted in the Text

 Formal
Education

Current Roles Played Former Work Experience

 Ty
pe

s o
f

Co
ur

se
s T

ak
en

So
ft

w
ar

e
Ar

ch
ite

ct
ur

e

Bu
si

ne
ss

Re

qu
ire

m
en

ts

Te
ch

ni
ca

l
Re

qu
ire

m
en

ts

Hi
gh

 L
ev

el

De
si

gn

Lo
w

 L
ev

el

De
si

gn

Pr
og

ra
m

m
in

g

DB
 D

es
ig

n

U
se

r
Ex

pe
rie

nc
e

Q

ua
lit

y
As

su
ra

nc
e

In
st

ru
ct

io
na

l
De

si
gn

Su
pe

rv
is

or
y

Ex
pe

rie
nc

e
in

So

ft
w

ar
e

De
si

gn

Ex
pe

rie
nc

e
in

In

st
ru

ct
io

na
l

De
si

gn

S04 Computing Yes Yes Yes Yes Yes Yes Yes Yes No No No 21+ Years None
S09 Computing Yes Yes Yes Yes Yes Yes Yes Yes Yes No No 21+ Years None
S10 ID/education Yes No No No No Yes No Yes Yes No No 21+ Years 16-20 Years
S11 Both No No No No No No No No No No No 5-10 Years 5-10 Years
S12 Computing Yes Yes Yes Yes Yes No No No Yes No No 16-20 Years None
S15 ID/education No Yes Yes Yes Yes No No No Yes No Yes 5-10 Years 5-10 Years
S17 Both No No No Yes Yes No No Yes No No Yes 21+ Years 1-4 Years
S23 Both No No No No No No No No No No No 21+ Years 5-10 Years
S31 Both Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 16-20 Years 21+ Years
S32 Both Yes No No No No Yes Yes Yes Yes No Yes 21+ Years 1-4 Years
S36 Computing Yes Yes Yes Yes Yes Yes No Yes Yes Yes Yes 21+ Years 11-15 Years
S37 Neither Yes No No No No Yes No No No No No 21+ Years 21+ Years
S38 Both Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 21+ Years 16-20 Years
S39 Computing Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 21+ Years None
S40 Computing Yes Yes Yes Yes Yes Yes No No Yes No No 21+ Years 5-10 Years
S43a Both No Yes No Yes No No No No Yes Yes Yes 21+ Years 21+ Years
S44 Both No No No No Yes No No Yes No No Yes 5-10 Years 5-10 Years
S51 Computing Yes Yes Yes Yes Yes No No No Yes No Yes 21+ Years 21+ Years
S54 ID/education No Yes No Yes Yes No No Yes Yes Yes Yes 21+ Years 5-10 Years
S56a Computing Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 21+ Years None
S57 Computing Yes Yes Yes No No Yes Yes Yes No No No 5-10 Years None
S62 Neither No No No No No No No No Yes Yes No 11-15 Years None
S63 Both No No No No Yes No No No No Yes Yes 21+ Years Under 1

www.manaraa.com

EDUCATIONAL SOFTWARE DESIGNERS’ EXPERIENCES 267

 Formal
Education

Current Roles Played Former Work Experience
 Ty

pe
s o

f
Co

ur
se

s T
ak

en

So
ft

w
ar

e
Ar

ch
ite

ct
ur

e

Bu
si

ne
ss

Re

qu
ire

m
en

ts

Te
ch

ni
ca

l
Re

qu
ire

m
en

ts

Hi
gh

 L
ev

el

De
si

gn

Lo
w

 L
ev

el

De
si

gn

Pr
og

ra
m

m
in

g

DB
 D

es
ig

n

U
se

r
Ex

pe
rie

nc
e

Q

ua
lit

y
As

su
ra

nc
e

In
st

ru
ct

io
na

l
De

si
gn

Su
pe

rv
is

or
y

Ex
pe

rie
nc

e
in

So

ft
w

ar
e

De
si

gn

Ex
pe

rie
nc

e
in

In

st
ru

ct
io

na
l

De
si

gn

Year
S64 Both No No No No No Yes No Yes No No No 16-20 Years 11-15 Years
S66 Computing Yes Yes Yes No No Yes No No Yes Yes No 5-10 Years None
S67 ID/education No Yes Yes Yes No No No No No No Yes Under 1

Year
1-4 Years

S68 Both No No Yes Yes Yes Yes No Yes Yes Yes Yes 5-10 Years 16-20 Years
S69 ID/education No No No No Yes No Yes Yes Yes No Yes 21+ Years 1-4 Years
S73a ID/education No Yes Yes Yes Yes No No No Yes No Yes 21+ Years 1-4 Years
S74a Both Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 21+ Years 21+ Years
S75 ID/education Yes Yes Yes Yes Yes Yes No No Yes No Yes 16-20 Years 16-20 Years
aParticipated in follow-up interview

www.manaraa.com

13 Curriculum Vitae

www.manaraa.com

Marisa E. Exter
522 W. Skyline

Bloomington, IN 47404
(812) 333-3986

mexter@indiana.edu

EDUCATION
PhD in Instructional Systems Technology, Computer Science Minor
Dissertation topic: Educational Background of Designers/Developers of Educational Software

Masters in Computer Science, Illinois Institute of Technology, December 2003

Bachelors in Computer Science, Elmhurst College, May 1999

TEACHING EXPERIENCE
Adjunct Faculty Member, Ivy Tech Community College, CIS-157: Web Site
Development, Fall, 2006.
Adapted and taught course. Course activities included interactive lectures on web design and practical
workshops on use of web-design tools, independent work and coaching time, and student presentations.

Technical Coach and Assistant Instructor, EDUC-R541: Instructional Development &
Production I, Spring 2006.
Lead synchronous critique sessions for blended graduate class of residential and online distance students.
Provided technical support and assistance throughout semester.

Co- Instructor, Indiana University, EDUC-K361: Assistive Technology in Special
Education, Fall 2005.
Assisted in design of and co-taught residential undergraduate course related to use and evaluation of AT.

PROFESSIONAL WORK EXPERIENCE
Director of Design, Development and Testing and Member of Research Team,
Critical Web Reader Project, Indiana University, 2010-present
Participated in high-level project planning for new product development and services. Day-to-day
management of team of 5-9 members. Developed high-level and database design documents for enhanced
toolset. Conducted build and testing for new features. Participated in research and grant writing.

Lead Developer (Graduate Research Assistant), Critical Web Reader Project, Indiana
University, 2005-2010
Served as Lead Designer/Developer and Research Assistant in the development of a tool to promote critical
reading of web-based materials in educational settings. Assisted in research and grant writing.

Instructional Designer (Intern, Full Time) DyKnow, May-August 2005
Created white papers and evaluation tools for the DyKnow Vision™ interactive note-taking system.

Software Engineer, Lucent Technologies, 1999-2004
Served as designer and lead programmer on guided installation and configuration system, and developer of
system stability infrastructure for a family of multi-processor telecommunication products. Worked closely
with systems engineers, testers, and technical writers throughout the life-cycle of each product.

Website developer, Arthur Anderson, May-December, 1999
Maintained dynamic components of company website and developed Y2K testing for company website.

Software Developer (Intern), Lucent Technologies, 1997-1999
Participated in a team which designed and developed a suite of change control software. Ported hardware
test-bed software to a graphical user interface.

www.manaraa.com

PEER-REVIEWED PUBLICATIONS
Exter, M. E. & Turnage, N. M. (In Review). Exploring experienced professionals’

reflections on computing education. Manuscript submitted for publication to
Transactions on Computing Education.

Damico, J.S., Baildon, M., Exter, M., & Guo, S. (December 2009/January 2010). Where
we read from matters: Disciplinary literacy in a 9th grade social studies classroom.
Journal of Adolescent & Adult Literacy, 53(4)

Exter, M.E., Korkmaz, N., Harlin, N.M., & Bichelmeyer, B.A. (2009). Distance education
students’ responses to sense of community within a fully online graduate program.
Quarterly Review of Distance Education, 10(2), 177-194.

Exter, M. E., Wang, Y., Exter, M. F. & Damico, J. S. (2009). Designing a tool to support
critical web reading. Techtrends, 53(1), 23-28.

Exter, M.E., Harlin, N.M., & Bichelmeyer, B.A. (2008). Story of a conference: Distance
education students’ experiences in a departmental conference. Internet and Higher
Education, 11 (1), 42-52.

EDITED BOOK SECTIONS
Exter, M. E., & Flick, J. (2010). Engaging online graduate students through volunteering:

Pitfalls and possibilties. In J. A. Jaworski (Ed.), Advances in Sociology Research
(Vol. 9): Nova Science Publishers, inc.

PUBLISHED CONFERENCE PAPERS
Exter, M. E., & Ochoa, T. A. (2006). Interactive assistive technology: a preliminary

analysis of the use of DyKnow Vision and Wacom Graphire 3 4X5 USB tablets in a
special education teacher preparation course. In D. A. Berque, J. C. Prey & R. H.
Reed (Eds.), The impact of tablet PCs and pen-based technology on education (pp.
57-65). Purdue, Indiana: Purdue University Press.

NON-PEER-REVIEWED PUBLICATIONS
Exter, M. E. (2005). A research based approach to encouraging effective note-taking: Best

practices and supporting technologies. Retrieved January 1, 2006, from
http://dyknow.com.

Exter, M. E. (2005). Encouraging active learning: Best practices and supporting
technologies. Retrieved January 1, 2006, from http://dyknow.com.

Exter, M. E. (2005). Providing timely feedback: Best practices and supporting
technologies. Retrieved January 1, 2006, from http://dyknow.com.

Exter, M. E. (2005). Encouraging effective note-taking: An annotated bibliography.
Retrieved January 1, 2006, from http://dyknow.com.

Exter, M. E. (2005). Facilitating active learning: An annotated bibliography. Retrieved
January 1, 2006, from http://dyknow.com.

Exter, M. E. (2005). A research based approach to providing useful feedback : An
annotated bibliography. Retrieved January 1, 2006, from http://dyknow.com.

http://dyknow.com/
http://dyknow.com/
http://dyknow.com/
http://dyknow.com/
http://dyknow.com/
http://dyknow.com/

www.manaraa.com

JURIED PRESENTATIONS
Exter, M. E. (2010, October). The Educational Experiences of Software Designers working

in Education Related Fields. Round table presentation at the annual meeting of the
Association for Educational Communications and Technology, Anaheim, CA.

Exter, M. E., Flick, J. (2010, October). Engaging Online Graduate Students through
Volunteering: Pitfalls and Possibilities. Paper presentation at the annual meeting of
the Association for Educational Communications and Technology, Anaheim, CA.

Exter, M.E., & Harlin, N.M. (2010, April). The Formal and Non-Formal Educational
Experiences of Software Designers. Poster session presented at the American
Educational Research Association (AERA). Denver, CA.

Exter, M.E., & Harlin, N.M. (2009, October). The Formal and Non-Formal Educational
Experiences of Software Designers. Paper presented at the annual meeting of the
Association for Educational Communications and Technology, Louisville, KY.

Harlin, N.M., Exter, M.E., & Boling, E. (2009, October). Software Designers’ Use of
Precedent. Paper presented at the annual meeting of the Association for Educational
Communications and Technology, Louisville, KY.

Exter, M. E., Korkmaz, N. & Boling, E. (2009, October). Use of Critique in an
Instructional Design Course: Perceived Value and Impact on Students' Design
Thinking. Paper presented at the annual meeting of the Association for Educational
Communications and Technology, Louisville, KY.

Korkmaz, N., Exter. M. E., Harlin, N. M. & Bichelmeyer, B. A. (2009, October). Students'
Feelings of Sense of Community within an Online Graduate Program. Paper
presented at the annual meeting of the Association for Educational Communications
and Technology, Louisville, KY.

Harlin, N.M., Exter, M.E., & Boling, E. (2009, February). Software Designers’ Use of
Precedent. Poster presented at the annual meeting of the American Educational
Research Association. San Diego, CA.

Damico, J. S., Baildon, M. C., Yazzie-Mintz, T., Riddle, R. L., Exter, M. E. (2009,
February). DiverseITy (Diverse IT): Using a Technology Tool for Curriculum
Innovation in TE. Interactive symposium session at the annual meeting of the
American Educational Research Association. San Diego, CA.

Exter, M. E., Korkmaz, N., Harlin, N. M., Bichelmeyer, B. A. (2008). Distance Education
Students’ Responses to Sense of Community within a Fully Online Graduate
Program. Paper discussion at the annual meeting of the American Educational
Research Association (AERA). New York, NY.

Exter, M. E., Wang, Y., Exter. M. F., Damico, J. S. (2008). Designing a Tool to Support
Critical Web Reading. Paper discussion at the annual meeting of the American
Educational Research Association (AERA). New York, NY.

Harlin, N. M.., Exter, M. E. & Bichelmeyer, B. A. (2008). Story of a Conference: Distance
Education Students’ Experiences in a Departmental Conference. Poster presented at

www.manaraa.com

the annual meeting of the American Educational Research Association (AERA). New
York, NY.

Korkmaz, N., Exter, M. E. & Bichelmeyer, B. A. (2008). Students’ Thoughts about Their
Interactions with Peers and Peer Feedback in a Blended Course: A Case Study.
Paper presented at the annual meeting of the American Educational Research
Association (AERA). New York, NY: 2008.

Korkmaz, N., Exter, M. E. & Boling, E. (2008). Students’ Perceptions of Peer Critique in a
Blended Instructional Design Course. Paper discussion at the annual meeting of the
American Educational Research Association (AERA). New York, NY.

Exter, M. E. & Ochoa, T. A. (2007). The use of an interactive note-taking system: A pilot
study in a teacher education course. Paper and poster presented in special poster
session at the annual meeting of the American Educational Research Association
(AERA). Chicago, IL.

Cheng, J., Exter, M. E., Korkmaz, N., Clark, L. V., Tian, L., Yoon, S. & Bichelmeyer, B.
(2007). Introducing the logic model as a framework for distance education program
evaluation. American Educational Research Association (AERA). Chicago, IL: 2007.

Damico, J. S., Baildon, M. C, Exter, M. E. & Guo, S. (2007). Accessing prior knowledge
and adjudicating between different perspectives: Students examine competing
websites in social studies. Paper presented at the annual meeting of the American
Educational Research Association (AERA). Chicago, IL.

Exter, M. E. & Ochoa, T. A. (2006). Interactive assistive technology: A preliminary
analysis of the use of DyKnow Vision and tablet pens in a special education teacher
preparation course. Paper presented at the annual Workshop on the Impact of Pen-
Based Technology on Education (WIPTE). Purdue, IN.

Treat, A. R. & Exter, M. E. (2005). Virtual Schools for the Gifted. Poster presented at the
annual conference of the National Association for Gifted Children (NAGC).
Louisville, KT: 2005.

FUNDED GRANTS
Office of Educaitonal Research, Ministry of Educaiton, Singapore: Funded project:
“Using Web-based Tools to Support Source Work and Inquiry in Social Studies”
(2009-2012)
I contributed to the planning and wrote portions of the 3-year, $450,000 (Singapore) grant application, as
well as contributing to a contract made between the National Institute of Education in Singapore and
Indiana University.

GPSO Travel Grant, Indiana University, 2008
This was a university-wide grant competition. I received $300 to partially funding travel expenses to attend
and present at a national conference.

Larson Award (Travel Grant) Recipient, 2008
This was a department-wide grant competition. I received $500 to fund travel expenses to attend and
present at a national conference.

www.manaraa.com

PROFESSIONAL SERVICE
Graduate Student Mental Health Working Group. Indiana University, 2010-2011.
Member of evaluation sub-committee of a university-wide working group charged with addressing mental
health issues amongst the Indiana University graduate student population.

AERA SIG Design and Technology Officer (Web Content Manager). 2008 - 2011
Produce/update materials on SIG-DAT’s website.

IST Conference, Advisor to Chair & Member of Submission-Review Committee,
Indiana University, 2008.
Assisted current conference chair in the development of the conference. Submission-Review committee
activities included assigning reviewers for submissions, making final decisions on submission acceptance,
and assisting with conference scheduling.

IST Conference Chair, Indiana University, 2007.
Organized two-day professional conference for residential and distance students, faculty and alumni (total
attendance of approximately 125). Conference activities included a keynote speaker, panel discussion of
invited speakers, presentations of research and practice by participants, a job fair, social gatherings, and
special interactive sessions.

IST Conference, Breeze coordinator, Indiana University, 2006.
Coordinated live and recorded Breeze sessions, which allowed Distance Education students, alumni, and
others to participate remotely

DyKnow Vision Workshops, Indiana University, 2005-2006.
Provided workshops on the use of interactive note-taking systems in the classroom to a number of
undergraduate classes, as well as an open workshop for professors and graduate students.

IST Conference, Chair of Food Committee, Indiana University, 2005.

REVIEWS
Invited for Peer-Review of Journal articles

Software: Practice and Experience, 2011.
THEN journal, 2008.
TechTrends, 2005.

Volunteered for Peer-Review of Conference proposals

American Educational Research Association (AERA), 2009.
Conference proposals (3 for Division J, 2 for SIG-DAT), Session proposal (1 for Division J)

Workshop on the Impact of Pen-based Technology on Education (WIPTE), 2008.
Conference proposals (3).

American Educational Research Association (AERA), 2008.
Conference proposals (2 for each of 2 SIGs).

IU IST Conference, 2008.
Conference and session proposals (2) and member of submission-review committee.

American Educational Research Association (AERA), 2007.
Conference proposals (2 for each of 2 SIGS).

Workshop on the Impact of Pen-based Technology on Education (WIPTE), 2007.
Conference proposals (2).

IU IST Conference, 2007.
Conference proposals (11) and member of submission-review committee.

www.manaraa.com

PUBLIC SERVICE
Adoption Councilor, Monroe County Humane Association, 2004-present
Interview clients and provide education and assistance in selecting appropriate pets.

ASSOCIATIONS
American Educational Research Association (AERA), former SIG-DAT officer
Association for Educational Communications and Technology (AECT)
Graduates in IST (GIST)
Association for Computing Machinery (ACM), member if SIG-CSE and SIG-ITE
Institute of Electrical and Electronics Engineers (IEEE)
Phi Kappa Phi honor society

HONORS, AWARDS, AND SCHOLARSHIPS
Chancellor's Fellowship, Indiana University, 2004-2008
Graduated Summa Cum Laude, Elmhurst College, 1999
Elmhurst College Honors Program, Elmhurst College, 1996-1999
Dean’s List, Elmhurst College 1995-1999
Dean’s Scholarship, Elmhurst College, 1995-1999

TECHNICAL SKILLS
Operating Systems: Unix, Windows 9X, ME, 2000, XP, Vista
Technologies: HTML/XHTML, CSS, CGI, SQL
Programming Languages: Perl/Perl-Tk, C#, C, C++, Java, Visual Basic, Javascript
Web Design: MS .NET Visual Studio, Adobe DreamWeaver, DotNetNuke, SharePoint
Data Analysis Software: SPSS, NVivo
Other Skills: OOD, OOP, database design, software engineering/end-to-end project
planning experience, technical project management

	3491471.pdf
	1 Chapter 1: Statement of the Problem
	1.1 Research Questions
	1.2 Study Design
	1.3 Significance for Researchers
	1.4 Significance for Practitioners, Educators and Program Administrators

	2 Chapter 2: Review of the Literature
	2.1 Design Fields
	2.1.1 Education for Design Professionals
	2.1.2 Expertise in Design Fields

	2.2 Continued Learning
	2.2.1 Lifelong Learning
	2.2.2 Self-directed Learning
	2.2.3 Continuing Professional Education
	2.2.4 “Growing” Designers

	2.3 Software Design
	2.3.1 Software Design Education
	2.3.1.1 IEEE and ACM: Software Engineering Body of Knowledge and Curricular Guidelines
	2.3.1.2 IEEE and ACM: Computer Science Curriculum 2008
	2.3.1.3 The International Federation for Information Processing: Standards for Professional Practice
	2.3.1.4 Liberal Arts Computer Science Consortium
	2.3.1.5 ABET Computing Accreditation Commission
	2.3.1.6 Ongoing Discussions of Software Design Educators
	2.3.1.7 Open topics for Software Design Educators

	2.3.2 Continuing Education of Software Designers

	2.4 Instructional Design
	2.4.1 Roles played by Instructional Designers
	2.4.1.1 IBSTPI Standards
	2.4.1.2 ISTE and NCATE accreditation guidelines

	2.4.2 Open topics in Instructional Design Education
	2.4.3 Software Design Roles for Instructional Designers

	2.5 Professional Interest in Educational Software
	2.6 Conclusion

	3 Chapter 3: Methods
	3.1 Terminology Used:
	3.1.1 Software Designer
	3.1.2 Computing Education
	3.1.3 Educational Software
	3.1.4 Competencies: Skills, Knowledge, and Attitudes
	3.1.5 Formal and Non-formal Education

	3.2 Participants
	3.3 Participants
	3.3.1 Phase 1: Interviews.
	3.3.2 Phase 2: Survey.
	3.3.3 Phase 3: Follow-up Interviews

	3.4 Procedures
	3.4.1 Phase 1: Interview Procedures
	3.4.2 Phase 2: Survey Administration
	3.4.3 Phase 3: Interview Procedures

	3.5 Data Analysis
	3.5.1 Qualitative Data Analysis
	3.5.1.1 Overview of Qualitative Data Analysis Procedure
	3.5.1.2 Unit of Analysis
	3.5.1.3 Coding Data from each Phase

	3.5.2 Quantitative Data Analysis

	3.6 Member Checking

	4 Findings
	4.1 Working in “Educational Software Design”
	4.1.1 Reasons for choosing to work in “Educational Software Design”
	4.1.2 Organizations worked in.
	4.1.3 Current Employment: Formal title
	4.1.4 Roles played.

	4.2 Formal Educational Paths
	4.2.1 Four Types of Backgrounds
	4.2.2 Experience in Software Design and Instructional Design

	4.3 Skills and Knowledge needed on the Job
	4.3.1 Playing different roles
	4.3.2 Technical Skills and Knowledge
	4.3.3 User experience design, visual design and usability related Skills and knowledge
	4.3.4 Management and Project Management related skills
	4.3.5 Communication and Team Skills
	4.3.6 Design Judgment
	4.3.7 Understand contexts and users
	4.3.8 Need for Self-learning
	4.3.9 Other things to be prepared for
	4.3.10 Skills and Knowledge Especially Important for working on Educational Software Design

	4.4 Formal Educational Preparation for the Job
	4.4.1 Computing Related Courses.
	4.4.2 Instructional Design and Education Related Courses.
	4.4.3 Preparation for the Job: “Unrelated” Courses and Experiences
	4.4.4 Gaps between Formal Education and Needs on the Job
	4.4.4.1 Gaps identified by interviewees
	4.4.4.2 Gaps identified through analysis of survey data

	4.5 Types of Non-formal Educational Experiences
	4.5.1 Sources and Materials Used
	4.5.1.1 Traditional print materials
	4.5.1.2 Online sources
	4.5.1.3 Other People
	4.5.1.4 Training courses
	4.5.1.5 Conferences
	4.5.1.6 Examples of other’s work
	4.5.1.7 Other sources
	4.5.1.8 Choosing and mixing sources

	4.5.2 Self-learning strategies

	4.6 Recommendations for an Ideal Undergraduate Program
	4.6.1 Degree Type
	4.6.2 Traits to foster in graduates
	4.6.2.1 Communication and Team skills
	4.6.2.2 Design Judgment
	4.6.2.3 Creativity
	4.6.2.4 Seeing other Perspectives
	4.6.2.5 Critical Thinking
	4.6.2.6 Strategic, methodical thought process for problem solving
	4.6.2.7 Technical Literacy for areas outside of one’s own expertise
	4.6.2.8 Project Management Skills
	4.6.2.9 Self-learning skills and outlook

	4.6.3 Passion for this work
	4.6.3.1 Other aspects

	4.6.4 Program Curriculum
	4.6.4.1 Computing foundations
	4.6.4.2 Computing specialty areas
	4.6.4.3 Instructional foundations
	4.6.4.4 Education specialty areas
	4.6.4.5 UI
	4.6.4.6 Other important foci or courses
	4.6.4.7 Practical experiences
	4.6.4.7.1 To be learned from practical experiences
	4.6.4.7.2 Projects
	4.6.4.7.3 Other types of practical and real-world experiences

	4.6.5 Program traits
	4.6.6 Issues with question
	4.6.6.1 Need for a Master’s degree?
	4.6.6.2 Other issues with the question

	5 Discussion
	5.1 Backgrounds: Multiple paths
	5.2 Instructional Design Education and Preparation for Management
	5.3 Interpreting the Gaps and implications for degree programs
	5.3.1 Implications for existing degree programs
	5.3.2 Ideal program for educational software designers

	5.4 Role of experience and self-learning and implications for degree programs
	5.4.1 Possible implications for degree programs
	5.4.2 Hypothetical Degree Program of the Future
	5.4.2.1 Significant, complex, coordinated real-world experiences.
	5.4.2.2 Liberal arts and sciences courses spread throughout the curriculum
	5.4.2.3 Trade-offs to provide curricular space

	5.5 Finally, it is important to ensure that classes are offered in a timely manner, to allow everyone to fit all required courses into a four year period. Including more topics in the “practical” experience hours which are offered each semester will help in this regard. Spreading liberal arts courses throughout the curriculum may also help, as students will be able to fit both their general education and computing-specific requirements in throughout the four year period when desired courses become available, instead of concentrating general education requirements at the beginning of the program and relying on specialized courses to be available in the last two semesters. The Role of Hiring Managers
	5.6 Limitations
	5.7 Areas for Future Research

	6 Works Cited
	7 Appendix A: Phase 1 Semi-structured interview protocol
	8 Appendix B: Phase 2 Survey instrument
	9 Appendix C: Phase 3 interview protocol: Sample of a personalized email
	10 Appendix D: Notes from external review of coding by experience colleague
	11 Appendix E: Member checking
	11.1 Response #1 (Phase 1 participant I1)
	11.2 Response #2 (Phase 3 participant S56)
	11.3 Response #3 (Phase 1 participant I5)

	12 Appendix F: List of Participants Quoted in the Text
	13 Curriculum Vitae

